Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlimcn1b.1 | |- ( ( ph /\ k e. A ) -> B e. X ) |
|
rlimcn1b.2 | |- ( ph -> C e. X ) |
||
rlimcn1b.3 | |- ( ph -> ( k e. A |-> B ) ~~>r C ) |
||
rlimcn1b.4 | |- ( ph -> F : X --> CC ) |
||
rlimcn1b.5 | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) |
||
Assertion | rlimcn1b | |- ( ph -> ( k e. A |-> ( F ` B ) ) ~~>r ( F ` C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcn1b.1 | |- ( ( ph /\ k e. A ) -> B e. X ) |
|
2 | rlimcn1b.2 | |- ( ph -> C e. X ) |
|
3 | rlimcn1b.3 | |- ( ph -> ( k e. A |-> B ) ~~>r C ) |
|
4 | rlimcn1b.4 | |- ( ph -> F : X --> CC ) |
|
5 | rlimcn1b.5 | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) |
|
6 | 4 1 | cofmpt | |- ( ph -> ( F o. ( k e. A |-> B ) ) = ( k e. A |-> ( F ` B ) ) ) |
7 | 1 | fmpttd | |- ( ph -> ( k e. A |-> B ) : A --> X ) |
8 | 7 2 3 4 5 | rlimcn1 | |- ( ph -> ( F o. ( k e. A |-> B ) ) ~~>r ( F ` C ) ) |
9 | 6 8 | eqbrtrrd | |- ( ph -> ( k e. A |-> ( F ` B ) ) ~~>r ( F ` C ) ) |