Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimcn2.1a | |- ( ( ph /\ z e. A ) -> B e. X ) |
|
| rlimcn2.1b | |- ( ( ph /\ z e. A ) -> C e. Y ) |
||
| rlimcn2.2a | |- ( ph -> R e. X ) |
||
| rlimcn2.2b | |- ( ph -> S e. Y ) |
||
| rlimcn2.3a | |- ( ph -> ( z e. A |-> B ) ~~>r R ) |
||
| rlimcn2.3b | |- ( ph -> ( z e. A |-> C ) ~~>r S ) |
||
| rlimcn2.4 | |- ( ph -> F : ( X X. Y ) --> CC ) |
||
| rlimcn2.5 | |- ( ( ph /\ x e. RR+ ) -> E. r e. RR+ E. s e. RR+ A. u e. X A. v e. Y ( ( ( abs ` ( u - R ) ) < r /\ ( abs ` ( v - S ) ) < s ) -> ( abs ` ( ( u F v ) - ( R F S ) ) ) < x ) ) |
||
| Assertion | rlimcn2 | |- ( ph -> ( z e. A |-> ( B F C ) ) ~~>r ( R F S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimcn2.1a | |- ( ( ph /\ z e. A ) -> B e. X ) |
|
| 2 | rlimcn2.1b | |- ( ( ph /\ z e. A ) -> C e. Y ) |
|
| 3 | rlimcn2.2a | |- ( ph -> R e. X ) |
|
| 4 | rlimcn2.2b | |- ( ph -> S e. Y ) |
|
| 5 | rlimcn2.3a | |- ( ph -> ( z e. A |-> B ) ~~>r R ) |
|
| 6 | rlimcn2.3b | |- ( ph -> ( z e. A |-> C ) ~~>r S ) |
|
| 7 | rlimcn2.4 | |- ( ph -> F : ( X X. Y ) --> CC ) |
|
| 8 | rlimcn2.5 | |- ( ( ph /\ x e. RR+ ) -> E. r e. RR+ E. s e. RR+ A. u e. X A. v e. Y ( ( ( abs ` ( u - R ) ) < r /\ ( abs ` ( v - S ) ) < s ) -> ( abs ` ( ( u F v ) - ( R F S ) ) ) < x ) ) |
|
| 9 | 7 | adantr | |- ( ( ph /\ z e. A ) -> F : ( X X. Y ) --> CC ) |
| 10 | 9 1 2 | fovcdmd | |- ( ( ph /\ z e. A ) -> ( B F C ) e. CC ) |
| 11 | 7 3 4 | fovcdmd | |- ( ph -> ( R F S ) e. CC ) |
| 12 | 1 2 10 11 5 6 8 | rlimcn3 | |- ( ph -> ( z e. A |-> ( B F C ) ) ~~>r ( R F S ) ) |