Metamath Proof Explorer


Theorem rlimcn2

Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014)

Ref Expression
Hypotheses rlimcn2.1a
|- ( ( ph /\ z e. A ) -> B e. X )
rlimcn2.1b
|- ( ( ph /\ z e. A ) -> C e. Y )
rlimcn2.2a
|- ( ph -> R e. X )
rlimcn2.2b
|- ( ph -> S e. Y )
rlimcn2.3a
|- ( ph -> ( z e. A |-> B ) ~~>r R )
rlimcn2.3b
|- ( ph -> ( z e. A |-> C ) ~~>r S )
rlimcn2.4
|- ( ph -> F : ( X X. Y ) --> CC )
rlimcn2.5
|- ( ( ph /\ x e. RR+ ) -> E. r e. RR+ E. s e. RR+ A. u e. X A. v e. Y ( ( ( abs ` ( u - R ) ) < r /\ ( abs ` ( v - S ) ) < s ) -> ( abs ` ( ( u F v ) - ( R F S ) ) ) < x ) )
Assertion rlimcn2
|- ( ph -> ( z e. A |-> ( B F C ) ) ~~>r ( R F S ) )

Proof

Step Hyp Ref Expression
1 rlimcn2.1a
 |-  ( ( ph /\ z e. A ) -> B e. X )
2 rlimcn2.1b
 |-  ( ( ph /\ z e. A ) -> C e. Y )
3 rlimcn2.2a
 |-  ( ph -> R e. X )
4 rlimcn2.2b
 |-  ( ph -> S e. Y )
5 rlimcn2.3a
 |-  ( ph -> ( z e. A |-> B ) ~~>r R )
6 rlimcn2.3b
 |-  ( ph -> ( z e. A |-> C ) ~~>r S )
7 rlimcn2.4
 |-  ( ph -> F : ( X X. Y ) --> CC )
8 rlimcn2.5
 |-  ( ( ph /\ x e. RR+ ) -> E. r e. RR+ E. s e. RR+ A. u e. X A. v e. Y ( ( ( abs ` ( u - R ) ) < r /\ ( abs ` ( v - S ) ) < s ) -> ( abs ` ( ( u F v ) - ( R F S ) ) ) < x ) )
9 7 adantr
 |-  ( ( ph /\ z e. A ) -> F : ( X X. Y ) --> CC )
10 9 1 2 fovrnd
 |-  ( ( ph /\ z e. A ) -> ( B F C ) e. CC )
11 7 3 4 fovrnd
 |-  ( ph -> ( R F S ) e. CC )
12 1 2 10 11 5 6 8 rlimcn3
 |-  ( ph -> ( z e. A |-> ( B F C ) ) ~~>r ( R F S ) )