Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
simpllr |
|- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> B e. CC ) |
3 |
2
|
subidd |
|- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> ( B - B ) = 0 ) |
4 |
3
|
fveq2d |
|- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> ( abs ` ( B - B ) ) = ( abs ` 0 ) ) |
5 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
6 |
4 5
|
eqtrdi |
|- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> ( abs ` ( B - B ) ) = 0 ) |
7 |
|
rpgt0 |
|- ( y e. RR+ -> 0 < y ) |
8 |
7
|
ad2antlr |
|- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> 0 < y ) |
9 |
6 8
|
eqbrtrd |
|- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> ( abs ` ( B - B ) ) < y ) |
10 |
9
|
a1d |
|- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> ( 0 <_ x -> ( abs ` ( B - B ) ) < y ) ) |
11 |
10
|
ralrimiva |
|- ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) -> A. x e. A ( 0 <_ x -> ( abs ` ( B - B ) ) < y ) ) |
12 |
|
breq1 |
|- ( z = 0 -> ( z <_ x <-> 0 <_ x ) ) |
13 |
12
|
rspceaimv |
|- ( ( 0 e. RR /\ A. x e. A ( 0 <_ x -> ( abs ` ( B - B ) ) < y ) ) -> E. z e. RR A. x e. A ( z <_ x -> ( abs ` ( B - B ) ) < y ) ) |
14 |
1 11 13
|
sylancr |
|- ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) -> E. z e. RR A. x e. A ( z <_ x -> ( abs ` ( B - B ) ) < y ) ) |
15 |
14
|
ralrimiva |
|- ( ( A C_ RR /\ B e. CC ) -> A. y e. RR+ E. z e. RR A. x e. A ( z <_ x -> ( abs ` ( B - B ) ) < y ) ) |
16 |
|
simplr |
|- ( ( ( A C_ RR /\ B e. CC ) /\ x e. A ) -> B e. CC ) |
17 |
16
|
ralrimiva |
|- ( ( A C_ RR /\ B e. CC ) -> A. x e. A B e. CC ) |
18 |
|
simpl |
|- ( ( A C_ RR /\ B e. CC ) -> A C_ RR ) |
19 |
|
simpr |
|- ( ( A C_ RR /\ B e. CC ) -> B e. CC ) |
20 |
17 18 19
|
rlim2 |
|- ( ( A C_ RR /\ B e. CC ) -> ( ( x e. A |-> B ) ~~>r B <-> A. y e. RR+ E. z e. RR A. x e. A ( z <_ x -> ( abs ` ( B - B ) ) < y ) ) ) |
21 |
15 20
|
mpbird |
|- ( ( A C_ RR /\ B e. CC ) -> ( x e. A |-> B ) ~~>r B ) |