Step |
Hyp |
Ref |
Expression |
1 |
|
rlimcxp.1 |
|- ( ( ph /\ n e. A ) -> B e. V ) |
2 |
|
rlimcxp.2 |
|- ( ph -> ( n e. A |-> B ) ~~>r 0 ) |
3 |
|
rlimcxp.3 |
|- ( ph -> C e. RR+ ) |
4 |
|
rlimf |
|- ( ( n e. A |-> B ) ~~>r 0 -> ( n e. A |-> B ) : dom ( n e. A |-> B ) --> CC ) |
5 |
2 4
|
syl |
|- ( ph -> ( n e. A |-> B ) : dom ( n e. A |-> B ) --> CC ) |
6 |
1
|
ralrimiva |
|- ( ph -> A. n e. A B e. V ) |
7 |
|
dmmptg |
|- ( A. n e. A B e. V -> dom ( n e. A |-> B ) = A ) |
8 |
6 7
|
syl |
|- ( ph -> dom ( n e. A |-> B ) = A ) |
9 |
8
|
feq2d |
|- ( ph -> ( ( n e. A |-> B ) : dom ( n e. A |-> B ) --> CC <-> ( n e. A |-> B ) : A --> CC ) ) |
10 |
5 9
|
mpbid |
|- ( ph -> ( n e. A |-> B ) : A --> CC ) |
11 |
|
eqid |
|- ( n e. A |-> B ) = ( n e. A |-> B ) |
12 |
11
|
fmpt |
|- ( A. n e. A B e. CC <-> ( n e. A |-> B ) : A --> CC ) |
13 |
10 12
|
sylibr |
|- ( ph -> A. n e. A B e. CC ) |
14 |
13
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> A. n e. A B e. CC ) |
15 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
16 |
3
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> C e. RR+ ) |
17 |
16
|
rprecred |
|- ( ( ph /\ x e. RR+ ) -> ( 1 / C ) e. RR ) |
18 |
15 17
|
rpcxpcld |
|- ( ( ph /\ x e. RR+ ) -> ( x ^c ( 1 / C ) ) e. RR+ ) |
19 |
2
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( n e. A |-> B ) ~~>r 0 ) |
20 |
14 18 19
|
rlimi |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) ) ) |
21 |
1 2
|
rlimmptrcl |
|- ( ( ph /\ n e. A ) -> B e. CC ) |
22 |
21
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> B e. CC ) |
23 |
22
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( abs ` B ) e. RR ) |
24 |
22
|
absge0d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> 0 <_ ( abs ` B ) ) |
25 |
18
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( x ^c ( 1 / C ) ) e. RR+ ) |
26 |
25
|
rpred |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( x ^c ( 1 / C ) ) e. RR ) |
27 |
25
|
rpge0d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> 0 <_ ( x ^c ( 1 / C ) ) ) |
28 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> C e. RR+ ) |
29 |
23 24 26 27 28
|
cxplt2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( abs ` B ) < ( x ^c ( 1 / C ) ) <-> ( ( abs ` B ) ^c C ) < ( ( x ^c ( 1 / C ) ) ^c C ) ) ) |
30 |
22
|
subid1d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( B - 0 ) = B ) |
31 |
30
|
fveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( abs ` ( B - 0 ) ) = ( abs ` B ) ) |
32 |
31
|
breq1d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) <-> ( abs ` B ) < ( x ^c ( 1 / C ) ) ) ) |
33 |
28
|
rpred |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> C e. RR ) |
34 |
|
abscxp2 |
|- ( ( B e. CC /\ C e. RR ) -> ( abs ` ( B ^c C ) ) = ( ( abs ` B ) ^c C ) ) |
35 |
22 33 34
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( abs ` ( B ^c C ) ) = ( ( abs ` B ) ^c C ) ) |
36 |
28
|
rpcnd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> C e. CC ) |
37 |
28
|
rpne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> C =/= 0 ) |
38 |
36 37
|
recid2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( 1 / C ) x. C ) = 1 ) |
39 |
38
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( x ^c ( ( 1 / C ) x. C ) ) = ( x ^c 1 ) ) |
40 |
|
simplr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> x e. RR+ ) |
41 |
17
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( 1 / C ) e. RR ) |
42 |
40 41 36
|
cxpmuld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( x ^c ( ( 1 / C ) x. C ) ) = ( ( x ^c ( 1 / C ) ) ^c C ) ) |
43 |
40
|
rpcnd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> x e. CC ) |
44 |
43
|
cxp1d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( x ^c 1 ) = x ) |
45 |
39 42 44
|
3eqtr3rd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> x = ( ( x ^c ( 1 / C ) ) ^c C ) ) |
46 |
35 45
|
breq12d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( abs ` ( B ^c C ) ) < x <-> ( ( abs ` B ) ^c C ) < ( ( x ^c ( 1 / C ) ) ^c C ) ) ) |
47 |
29 32 46
|
3bitr4d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) <-> ( abs ` ( B ^c C ) ) < x ) ) |
48 |
47
|
biimpd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) -> ( abs ` ( B ^c C ) ) < x ) ) |
49 |
48
|
imim2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( y <_ n -> ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) ) -> ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) ) |
50 |
49
|
ralimdva |
|- ( ( ph /\ x e. RR+ ) -> ( A. n e. A ( y <_ n -> ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) ) -> A. n e. A ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) ) |
51 |
50
|
reximdv |
|- ( ( ph /\ x e. RR+ ) -> ( E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) ) -> E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) ) |
52 |
20 51
|
mpd |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) |
53 |
52
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) |
54 |
3
|
rpcnd |
|- ( ph -> C e. CC ) |
55 |
54
|
adantr |
|- ( ( ph /\ n e. A ) -> C e. CC ) |
56 |
21 55
|
cxpcld |
|- ( ( ph /\ n e. A ) -> ( B ^c C ) e. CC ) |
57 |
56
|
ralrimiva |
|- ( ph -> A. n e. A ( B ^c C ) e. CC ) |
58 |
|
rlimss |
|- ( ( n e. A |-> B ) ~~>r 0 -> dom ( n e. A |-> B ) C_ RR ) |
59 |
2 58
|
syl |
|- ( ph -> dom ( n e. A |-> B ) C_ RR ) |
60 |
8 59
|
eqsstrrd |
|- ( ph -> A C_ RR ) |
61 |
57 60
|
rlim0 |
|- ( ph -> ( ( n e. A |-> ( B ^c C ) ) ~~>r 0 <-> A. x e. RR+ E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) ) |
62 |
53 61
|
mpbird |
|- ( ph -> ( n e. A |-> ( B ^c C ) ) ~~>r 0 ) |