Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlimf | |- ( F ~~>r A -> F : dom F --> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimpm | |- ( F ~~>r A -> F e. ( CC ^pm RR ) ) |
|
| 2 | cnex | |- CC e. _V |
|
| 3 | reex | |- RR e. _V |
|
| 4 | 2 3 | elpm2 | |- ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) |
| 5 | 4 | simplbi | |- ( F e. ( CC ^pm RR ) -> F : dom F --> CC ) |
| 6 | 1 5 | syl | |- ( F ~~>r A -> F : dom F --> CC ) |