| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimle.1 |
|- ( ph -> sup ( A , RR* , < ) = +oo ) |
| 2 |
|
rlimle.2 |
|- ( ph -> ( x e. A |-> B ) ~~>r D ) |
| 3 |
|
rlimle.3 |
|- ( ph -> ( x e. A |-> C ) ~~>r E ) |
| 4 |
|
rlimle.4 |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 5 |
|
rlimle.5 |
|- ( ( ph /\ x e. A ) -> C e. RR ) |
| 6 |
|
rlimle.6 |
|- ( ( ph /\ x e. A ) -> B <_ C ) |
| 7 |
5 4 3 2
|
rlimsub |
|- ( ph -> ( x e. A |-> ( C - B ) ) ~~>r ( E - D ) ) |
| 8 |
5 4
|
resubcld |
|- ( ( ph /\ x e. A ) -> ( C - B ) e. RR ) |
| 9 |
5 4
|
subge0d |
|- ( ( ph /\ x e. A ) -> ( 0 <_ ( C - B ) <-> B <_ C ) ) |
| 10 |
6 9
|
mpbird |
|- ( ( ph /\ x e. A ) -> 0 <_ ( C - B ) ) |
| 11 |
1 7 8 10
|
rlimge0 |
|- ( ph -> 0 <_ ( E - D ) ) |
| 12 |
1 3 5
|
rlimrecl |
|- ( ph -> E e. RR ) |
| 13 |
1 2 4
|
rlimrecl |
|- ( ph -> D e. RR ) |
| 14 |
12 13
|
subge0d |
|- ( ph -> ( 0 <_ ( E - D ) <-> D <_ E ) ) |
| 15 |
11 14
|
mpbid |
|- ( ph -> D <_ E ) |