Metamath Proof Explorer


Theorem rlimmptrcl

Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimabs.1
|- ( ( ph /\ k e. A ) -> B e. V )
rlimabs.2
|- ( ph -> ( k e. A |-> B ) ~~>r C )
Assertion rlimmptrcl
|- ( ( ph /\ k e. A ) -> B e. CC )

Proof

Step Hyp Ref Expression
1 rlimabs.1
 |-  ( ( ph /\ k e. A ) -> B e. V )
2 rlimabs.2
 |-  ( ph -> ( k e. A |-> B ) ~~>r C )
3 rlimf
 |-  ( ( k e. A |-> B ) ~~>r C -> ( k e. A |-> B ) : dom ( k e. A |-> B ) --> CC )
4 2 3 syl
 |-  ( ph -> ( k e. A |-> B ) : dom ( k e. A |-> B ) --> CC )
5 eqid
 |-  ( k e. A |-> B ) = ( k e. A |-> B )
6 5 1 dmmptd
 |-  ( ph -> dom ( k e. A |-> B ) = A )
7 6 feq2d
 |-  ( ph -> ( ( k e. A |-> B ) : dom ( k e. A |-> B ) --> CC <-> ( k e. A |-> B ) : A --> CC ) )
8 4 7 mpbid
 |-  ( ph -> ( k e. A |-> B ) : A --> CC )
9 8 fvmptelrn
 |-  ( ( ph /\ k e. A ) -> B e. CC )