Step |
Hyp |
Ref |
Expression |
1 |
|
rlimabs.1 |
|- ( ( ph /\ k e. A ) -> B e. V ) |
2 |
|
rlimabs.2 |
|- ( ph -> ( k e. A |-> B ) ~~>r C ) |
3 |
|
rlimf |
|- ( ( k e. A |-> B ) ~~>r C -> ( k e. A |-> B ) : dom ( k e. A |-> B ) --> CC ) |
4 |
2 3
|
syl |
|- ( ph -> ( k e. A |-> B ) : dom ( k e. A |-> B ) --> CC ) |
5 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
6 |
5 1
|
dmmptd |
|- ( ph -> dom ( k e. A |-> B ) = A ) |
7 |
6
|
feq2d |
|- ( ph -> ( ( k e. A |-> B ) : dom ( k e. A |-> B ) --> CC <-> ( k e. A |-> B ) : A --> CC ) ) |
8 |
4 7
|
mpbid |
|- ( ph -> ( k e. A |-> B ) : A --> CC ) |
9 |
8
|
fvmptelrn |
|- ( ( ph /\ k e. A ) -> B e. CC ) |