Step |
Hyp |
Ref |
Expression |
1 |
|
rlimadd.3 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
2 |
|
rlimadd.4 |
|- ( ( ph /\ x e. A ) -> C e. V ) |
3 |
|
rlimadd.5 |
|- ( ph -> ( x e. A |-> B ) ~~>r D ) |
4 |
|
rlimadd.6 |
|- ( ph -> ( x e. A |-> C ) ~~>r E ) |
5 |
1 3
|
rlimmptrcl |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
6 |
2 4
|
rlimmptrcl |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
7 |
5 6
|
mulcld |
|- ( ( ph /\ x e. A ) -> ( B x. C ) e. CC ) |
8 |
|
rlimcl |
|- ( ( x e. A |-> B ) ~~>r D -> D e. CC ) |
9 |
3 8
|
syl |
|- ( ph -> D e. CC ) |
10 |
|
rlimcl |
|- ( ( x e. A |-> C ) ~~>r E -> E e. CC ) |
11 |
4 10
|
syl |
|- ( ph -> E e. CC ) |
12 |
9 11
|
mulcld |
|- ( ph -> ( D x. E ) e. CC ) |
13 |
|
simpr |
|- ( ( ph /\ y e. RR+ ) -> y e. RR+ ) |
14 |
9
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> D e. CC ) |
15 |
11
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> E e. CC ) |
16 |
|
mulcn2 |
|- ( ( y e. RR+ /\ D e. CC /\ E e. CC ) -> E. z e. RR+ E. w e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - D ) ) < z /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( u x. v ) - ( D x. E ) ) ) < y ) ) |
17 |
13 14 15 16
|
syl3anc |
|- ( ( ph /\ y e. RR+ ) -> E. z e. RR+ E. w e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - D ) ) < z /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( u x. v ) - ( D x. E ) ) ) < y ) ) |
18 |
5 6 7 12 3 4 17
|
rlimcn3 |
|- ( ph -> ( x e. A |-> ( B x. C ) ) ~~>r ( D x. E ) ) |