Step |
Hyp |
Ref |
Expression |
1 |
|
rlimneg.1 |
|- ( ( ph /\ k e. A ) -> B e. V ) |
2 |
|
rlimneg.2 |
|- ( ph -> ( k e. A |-> B ) ~~>r C ) |
3 |
|
0cnd |
|- ( ( ph /\ k e. A ) -> 0 e. CC ) |
4 |
1 2
|
rlimmptrcl |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
5 |
1
|
ralrimiva |
|- ( ph -> A. k e. A B e. V ) |
6 |
|
dmmptg |
|- ( A. k e. A B e. V -> dom ( k e. A |-> B ) = A ) |
7 |
5 6
|
syl |
|- ( ph -> dom ( k e. A |-> B ) = A ) |
8 |
|
rlimss |
|- ( ( k e. A |-> B ) ~~>r C -> dom ( k e. A |-> B ) C_ RR ) |
9 |
2 8
|
syl |
|- ( ph -> dom ( k e. A |-> B ) C_ RR ) |
10 |
7 9
|
eqsstrrd |
|- ( ph -> A C_ RR ) |
11 |
|
0cn |
|- 0 e. CC |
12 |
|
rlimconst |
|- ( ( A C_ RR /\ 0 e. CC ) -> ( k e. A |-> 0 ) ~~>r 0 ) |
13 |
10 11 12
|
sylancl |
|- ( ph -> ( k e. A |-> 0 ) ~~>r 0 ) |
14 |
3 4 13 2
|
rlimsub |
|- ( ph -> ( k e. A |-> ( 0 - B ) ) ~~>r ( 0 - C ) ) |
15 |
|
df-neg |
|- -u B = ( 0 - B ) |
16 |
15
|
mpteq2i |
|- ( k e. A |-> -u B ) = ( k e. A |-> ( 0 - B ) ) |
17 |
|
df-neg |
|- -u C = ( 0 - C ) |
18 |
14 16 17
|
3brtr4g |
|- ( ph -> ( k e. A |-> -u B ) ~~>r -u C ) |