Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rlimrel | |- Rel ~~>r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rlim | |- ~~>r = { <. f , x >. | ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) } |
|
2 | 1 | relopabiv | |- Rel ~~>r |