Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimres2.1 | |- ( ph -> A C_ B ) |
|
| rlimres2.2 | |- ( ph -> ( x e. B |-> C ) ~~>r D ) |
||
| Assertion | rlimres2 | |- ( ph -> ( x e. A |-> C ) ~~>r D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimres2.1 | |- ( ph -> A C_ B ) |
|
| 2 | rlimres2.2 | |- ( ph -> ( x e. B |-> C ) ~~>r D ) |
|
| 3 | 1 | resmptd | |- ( ph -> ( ( x e. B |-> C ) |` A ) = ( x e. A |-> C ) ) |
| 4 | rlimres | |- ( ( x e. B |-> C ) ~~>r D -> ( ( x e. B |-> C ) |` A ) ~~>r D ) |
|
| 5 | 2 4 | syl | |- ( ph -> ( ( x e. B |-> C ) |` A ) ~~>r D ) |
| 6 | 3 5 | eqbrtrrd | |- ( ph -> ( x e. A |-> C ) ~~>r D ) |