Metamath Proof Explorer


Theorem rlimres2

Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Hypotheses rlimres2.1
|- ( ph -> A C_ B )
rlimres2.2
|- ( ph -> ( x e. B |-> C ) ~~>r D )
Assertion rlimres2
|- ( ph -> ( x e. A |-> C ) ~~>r D )

Proof

Step Hyp Ref Expression
1 rlimres2.1
 |-  ( ph -> A C_ B )
2 rlimres2.2
 |-  ( ph -> ( x e. B |-> C ) ~~>r D )
3 1 resmptd
 |-  ( ph -> ( ( x e. B |-> C ) |` A ) = ( x e. A |-> C ) )
4 rlimres
 |-  ( ( x e. B |-> C ) ~~>r D -> ( ( x e. B |-> C ) |` A ) ~~>r D )
5 2 4 syl
 |-  ( ph -> ( ( x e. B |-> C ) |` A ) ~~>r D )
6 3 5 eqbrtrrd
 |-  ( ph -> ( x e. A |-> C ) ~~>r D )