| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimsqz.d |
|- ( ph -> D e. RR ) |
| 2 |
|
rlimsqz.m |
|- ( ph -> M e. RR ) |
| 3 |
|
rlimsqz.l |
|- ( ph -> ( x e. A |-> B ) ~~>r D ) |
| 4 |
|
rlimsqz.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 5 |
|
rlimsqz.c |
|- ( ( ph /\ x e. A ) -> C e. RR ) |
| 6 |
|
rlimsqz.1 |
|- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> B <_ C ) |
| 7 |
|
rlimsqz.2 |
|- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> C <_ D ) |
| 8 |
1
|
recnd |
|- ( ph -> D e. CC ) |
| 9 |
4
|
recnd |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 10 |
5
|
recnd |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
| 11 |
4
|
adantrr |
|- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> B e. RR ) |
| 12 |
5
|
adantrr |
|- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> C e. RR ) |
| 13 |
1
|
adantr |
|- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> D e. RR ) |
| 14 |
11 12 13 6
|
lesub2dd |
|- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( D - C ) <_ ( D - B ) ) |
| 15 |
12 13 7
|
abssuble0d |
|- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( abs ` ( C - D ) ) = ( D - C ) ) |
| 16 |
11 12 13 6 7
|
letrd |
|- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> B <_ D ) |
| 17 |
11 13 16
|
abssuble0d |
|- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( abs ` ( B - D ) ) = ( D - B ) ) |
| 18 |
14 15 17
|
3brtr4d |
|- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( abs ` ( C - D ) ) <_ ( abs ` ( B - D ) ) ) |
| 19 |
2 8 3 9 10 18
|
rlimsqzlem |
|- ( ph -> ( x e. A |-> C ) ~~>r D ) |