Description: Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rlm0 | |- ( 0g ` R ) = ( 0g ` ( ringLMod ` R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmval | |- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
|
2 | 1 | a1i | |- ( T. -> ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) ) |
3 | eqidd | |- ( T. -> ( 0g ` R ) = ( 0g ` R ) ) |
|
4 | ssidd | |- ( T. -> ( Base ` R ) C_ ( Base ` R ) ) |
|
5 | 2 3 4 | sralmod0 | |- ( T. -> ( 0g ` R ) = ( 0g ` ( ringLMod ` R ) ) ) |
6 | 5 | mptru | |- ( 0g ` R ) = ( 0g ` ( ringLMod ` R ) ) |