Description: The ring module over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rlmassa | |- ( R e. CRing -> ( ringLMod ` R ) e. AssAlg ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
3 | 2 | subrgid | |- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
4 | 1 3 | syl | |- ( R e. CRing -> ( Base ` R ) e. ( SubRing ` R ) ) |
5 | rlmval | |- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
|
6 | 5 | sraassa | |- ( ( R e. CRing /\ ( Base ` R ) e. ( SubRing ` R ) ) -> ( ringLMod ` R ) e. AssAlg ) |
7 | 4 6 | mpdan | |- ( R e. CRing -> ( ringLMod ` R ) e. AssAlg ) |