Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. CMetSp ) |
2 |
|
cmsms |
|- ( R e. CMetSp -> R e. MetSp ) |
3 |
|
mstps |
|- ( R e. MetSp -> R e. TopSp ) |
4 |
1 2 3
|
3syl |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. TopSp ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
|
eqid |
|- ( TopOpen ` R ) = ( TopOpen ` R ) |
7 |
5 6
|
tpsuni |
|- ( R e. TopSp -> ( Base ` R ) = U. ( TopOpen ` R ) ) |
8 |
4 7
|
syl |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( Base ` R ) = U. ( TopOpen ` R ) ) |
9 |
6
|
tpstop |
|- ( R e. TopSp -> ( TopOpen ` R ) e. Top ) |
10 |
|
eqid |
|- U. ( TopOpen ` R ) = U. ( TopOpen ` R ) |
11 |
10
|
topcld |
|- ( ( TopOpen ` R ) e. Top -> U. ( TopOpen ` R ) e. ( Clsd ` ( TopOpen ` R ) ) ) |
12 |
4 9 11
|
3syl |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> U. ( TopOpen ` R ) e. ( Clsd ` ( TopOpen ` R ) ) ) |
13 |
8 12
|
eqeltrd |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( Base ` R ) e. ( Clsd ` ( TopOpen ` R ) ) ) |
14 |
5
|
ressid |
|- ( R e. NrmRing -> ( R |`s ( Base ` R ) ) = R ) |
15 |
14
|
3ad2ant1 |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( R |`s ( Base ` R ) ) = R ) |
16 |
|
simp2 |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. DivRing ) |
17 |
15 16
|
eqeltrd |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( R |`s ( Base ` R ) ) e. DivRing ) |
18 |
|
simp1 |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. NrmRing ) |
19 |
|
nrgring |
|- ( R e. NrmRing -> R e. Ring ) |
20 |
19
|
3ad2ant1 |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. Ring ) |
21 |
5
|
subrgid |
|- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
22 |
20 21
|
syl |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( Base ` R ) e. ( SubRing ` R ) ) |
23 |
|
rlmval |
|- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
24 |
23 6
|
srabn |
|- ( ( R e. NrmRing /\ R e. CMetSp /\ ( Base ` R ) e. ( SubRing ` R ) ) -> ( ( ringLMod ` R ) e. Ban <-> ( ( Base ` R ) e. ( Clsd ` ( TopOpen ` R ) ) /\ ( R |`s ( Base ` R ) ) e. DivRing ) ) ) |
25 |
18 1 22 24
|
syl3anc |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( ( ringLMod ` R ) e. Ban <-> ( ( Base ` R ) e. ( Clsd ` ( TopOpen ` R ) ) /\ ( R |`s ( Base ` R ) ) e. DivRing ) ) ) |
26 |
13 17 25
|
mpbir2and |
|- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( ringLMod ` R ) e. Ban ) |