Metamath Proof Explorer


Theorem rlmfn

Description: ringLMod is a function. (Contributed by Stefan O'Rear, 6-Dec-2014)

Ref Expression
Assertion rlmfn
|- ringLMod Fn _V

Proof

Step Hyp Ref Expression
1 fvex
 |-  ( ( subringAlg ` a ) ` ( Base ` a ) ) e. _V
2 df-rgmod
 |-  ringLMod = ( a e. _V |-> ( ( subringAlg ` a ) ` ( Base ` a ) ) )
3 1 2 fnmpti
 |-  ringLMod Fn _V