| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlmval |
|- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
| 2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 3 |
2
|
subrgid |
|- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 4 |
|
eqid |
|- ( ( subringAlg ` R ) ` ( Base ` R ) ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
| 5 |
4
|
sralmod |
|- ( ( Base ` R ) e. ( SubRing ` R ) -> ( ( subringAlg ` R ) ` ( Base ` R ) ) e. LMod ) |
| 6 |
3 5
|
syl |
|- ( R e. Ring -> ( ( subringAlg ` R ) ` ( Base ` R ) ) e. LMod ) |
| 7 |
1 6
|
eqeltrid |
|- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |