Step |
Hyp |
Ref |
Expression |
1 |
|
rlmval |
|- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
2
|
subrgid |
|- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
4 |
|
eqid |
|- ( ( subringAlg ` R ) ` ( Base ` R ) ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
5 |
4
|
sralmod |
|- ( ( Base ` R ) e. ( SubRing ` R ) -> ( ( subringAlg ` R ) ` ( Base ` R ) ) e. LMod ) |
6 |
3 5
|
syl |
|- ( R e. Ring -> ( ( subringAlg ` R ) ` ( Base ` R ) ) e. LMod ) |
7 |
1 6
|
eqeltrid |
|- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |