| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 2 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 3 |  | eqid |  |-  ( LSSum ` R ) = ( LSSum ` R ) | 
						
							| 4 | 1 2 3 | lsmfval |  |-  ( R e. V -> ( LSSum ` R ) = ( t e. ~P ( Base ` R ) , u e. ~P ( Base ` R ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` R ) y ) ) ) ) | 
						
							| 5 |  | fvex |  |-  ( ringLMod ` R ) e. _V | 
						
							| 6 |  | rlmbas |  |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) | 
						
							| 7 |  | rlmplusg |  |-  ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) | 
						
							| 8 |  | eqid |  |-  ( LSSum ` ( ringLMod ` R ) ) = ( LSSum ` ( ringLMod ` R ) ) | 
						
							| 9 | 6 7 8 | lsmfval |  |-  ( ( ringLMod ` R ) e. _V -> ( LSSum ` ( ringLMod ` R ) ) = ( t e. ~P ( Base ` R ) , u e. ~P ( Base ` R ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` R ) y ) ) ) ) | 
						
							| 10 | 5 9 | mp1i |  |-  ( R e. V -> ( LSSum ` ( ringLMod ` R ) ) = ( t e. ~P ( Base ` R ) , u e. ~P ( Base ` R ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` R ) y ) ) ) ) | 
						
							| 11 | 4 10 | eqtr4d |  |-  ( R e. V -> ( LSSum ` R ) = ( LSSum ` ( ringLMod ` R ) ) ) |