Description: Ring multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmmulr | |- ( .r ` R ) = ( .r ` ( ringLMod ` R ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rlmval | |- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) | |
| 2 | 1 | a1i | |- ( T. -> ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) ) | 
| 3 | ssidd | |- ( T. -> ( Base ` R ) C_ ( Base ` R ) ) | |
| 4 | 2 3 | sramulr | |- ( T. -> ( .r ` R ) = ( .r ` ( ringLMod ` R ) ) ) | 
| 5 | 4 | mptru | |- ( .r ` R ) = ( .r ` ( ringLMod ` R ) ) |