Description: The ring module over a normed division ring is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rlmnvc | |- ( ( R e. NrmRing /\ R e. DivRing ) -> ( ringLMod ` R ) e. NrmVec ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmnlm | |- ( R e. NrmRing -> ( ringLMod ` R ) e. NrmMod ) |
|
2 | rlmlvec | |- ( R e. DivRing -> ( ringLMod ` R ) e. LVec ) |
|
3 | isnvc | |- ( ( ringLMod ` R ) e. NrmVec <-> ( ( ringLMod ` R ) e. NrmMod /\ ( ringLMod ` R ) e. LVec ) ) |
|
4 | 3 | biimpri | |- ( ( ( ringLMod ` R ) e. NrmMod /\ ( ringLMod ` R ) e. LVec ) -> ( ringLMod ` R ) e. NrmVec ) |
5 | 1 2 4 | syl2an | |- ( ( R e. NrmRing /\ R e. DivRing ) -> ( ringLMod ` R ) e. NrmVec ) |