| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 2 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 3 | 1 2 | mgpbas |  |-  ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 4 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 5 | 1 4 | mgpplusg |  |-  ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) | 
						
							| 6 |  | eqid |  |-  ( +f ` ( mulGrp ` R ) ) = ( +f ` ( mulGrp ` R ) ) | 
						
							| 7 | 3 5 6 | plusffval |  |-  ( +f ` ( mulGrp ` R ) ) = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( x ( .r ` R ) y ) ) | 
						
							| 8 |  | rlmbas |  |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) | 
						
							| 9 |  | rlmsca2 |  |-  ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) | 
						
							| 10 |  | baseid |  |-  Base = Slot ( Base ` ndx ) | 
						
							| 11 | 10 2 | strfvi |  |-  ( Base ` R ) = ( Base ` ( _I ` R ) ) | 
						
							| 12 |  | eqid |  |-  ( .sf ` ( ringLMod ` R ) ) = ( .sf ` ( ringLMod ` R ) ) | 
						
							| 13 |  | rlmvsca |  |-  ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) | 
						
							| 14 | 8 9 11 12 13 | scaffval |  |-  ( .sf ` ( ringLMod ` R ) ) = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( x ( .r ` R ) y ) ) | 
						
							| 15 | 7 14 | eqtr4i |  |-  ( +f ` ( mulGrp ` R ) ) = ( .sf ` ( ringLMod ` R ) ) |