Description: Subtraction in the ring module. (Contributed by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmsub | |- ( -g ` R ) = ( -g ` ( ringLMod ` R ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rlmbas | |- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) | |
| 2 | 1 | a1i | |- ( T. -> ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) ) | 
| 3 | rlmplusg | |- ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) | |
| 4 | 3 | a1i | |- ( T. -> ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) ) | 
| 5 | 2 4 | grpsubpropd | |- ( T. -> ( -g ` R ) = ( -g ` ( ringLMod ` R ) ) ) | 
| 6 | 5 | mptru | |- ( -g ` R ) = ( -g ` ( ringLMod ` R ) ) |