Metamath Proof Explorer


Theorem rlmsub

Description: Subtraction in the ring module. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Assertion rlmsub
|- ( -g ` R ) = ( -g ` ( ringLMod ` R ) )

Proof

Step Hyp Ref Expression
1 rlmbas
 |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) )
2 1 a1i
 |-  ( T. -> ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) )
3 rlmplusg
 |-  ( +g ` R ) = ( +g ` ( ringLMod ` R ) )
4 3 a1i
 |-  ( T. -> ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) )
5 2 4 grpsubpropd
 |-  ( T. -> ( -g ` R ) = ( -g ` ( ringLMod ` R ) ) )
6 5 mptru
 |-  ( -g ` R ) = ( -g ` ( ringLMod ` R ) )