| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
|- ( T. -> ( Base ` R ) = ( Base ` R ) ) |
| 2 |
|
rlmbas |
|- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
| 3 |
2
|
a1i |
|- ( T. -> ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) ) |
| 4 |
|
rlmplusg |
|- ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) |
| 5 |
4
|
a1i |
|- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) ) |
| 6 |
5
|
oveqd |
|- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` ( ringLMod ` R ) ) y ) ) |
| 7 |
1 3 6
|
grpinvpropd |
|- ( T. -> ( invg ` R ) = ( invg ` ( ringLMod ` R ) ) ) |
| 8 |
7
|
mptru |
|- ( invg ` R ) = ( invg ` ( ringLMod ` R ) ) |