Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
|- ( T. -> ( Base ` R ) = ( Base ` R ) ) |
2 |
|
rlmbas |
|- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
3 |
2
|
a1i |
|- ( T. -> ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) ) |
4 |
|
rlmplusg |
|- ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) |
5 |
4
|
a1i |
|- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) ) |
6 |
5
|
oveqd |
|- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` ( ringLMod ` R ) ) y ) ) |
7 |
1 3 6
|
grpinvpropd |
|- ( T. -> ( invg ` R ) = ( invg ` ( ringLMod ` R ) ) ) |
8 |
7
|
mptru |
|- ( invg ` R ) = ( invg ` ( ringLMod ` R ) ) |