Description: Scalar multiplication in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rlmvsca | |- ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmval | |- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
|
2 | 1 | a1i | |- ( T. -> ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) ) |
3 | ssidd | |- ( T. -> ( Base ` R ) C_ ( Base ` R ) ) |
|
4 | 2 3 | sravsca | |- ( T. -> ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) ) |
5 | 4 | mptru | |- ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) |