Step |
Hyp |
Ref |
Expression |
1 |
|
rlocaddval.1 |
|- B = ( Base ` R ) |
2 |
|
rlocaddval.2 |
|- .x. = ( .r ` R ) |
3 |
|
rlocaddval.3 |
|- .+ = ( +g ` R ) |
4 |
|
rlocaddval.4 |
|- L = ( R RLocal S ) |
5 |
|
rlocaddval.5 |
|- .~ = ( R ~RL S ) |
6 |
|
rlocaddval.r |
|- ( ph -> R e. CRing ) |
7 |
|
rlocaddval.s |
|- ( ph -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
8 |
|
rlocaddval.6 |
|- ( ph -> E e. B ) |
9 |
|
rlocaddval.7 |
|- ( ph -> F e. B ) |
10 |
|
rlocaddval.8 |
|- ( ph -> G e. S ) |
11 |
|
rlocaddval.9 |
|- ( ph -> H e. S ) |
12 |
|
rlocaddval.10 |
|- .(+) = ( +g ` L ) |
13 |
8 10
|
opelxpd |
|- ( ph -> <. E , G >. e. ( B X. S ) ) |
14 |
9 11
|
opelxpd |
|- ( ph -> <. F , H >. e. ( B X. S ) ) |
15 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
16 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
17 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
18 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
19 |
|
eqid |
|- ( Base ` ( Scalar ` R ) ) = ( Base ` ( Scalar ` R ) ) |
20 |
|
eqid |
|- ( .s ` R ) = ( .s ` R ) |
21 |
|
eqid |
|- ( B X. S ) = ( B X. S ) |
22 |
|
eqid |
|- ( TopSet ` R ) = ( TopSet ` R ) |
23 |
|
eqid |
|- ( dist ` R ) = ( dist ` R ) |
24 |
|
eqid |
|- ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) |
25 |
|
eqid |
|- ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) |
26 |
|
eqid |
|- ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) = ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) |
27 |
|
eqid |
|- { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } |
28 |
|
eqid |
|- ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) |
29 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
30 |
29 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
31 |
30
|
submss |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> S C_ B ) |
32 |
7 31
|
syl |
|- ( ph -> S C_ B ) |
33 |
1 15 2 16 3 17 18 19 20 21 5 22 23 24 25 26 27 28 6 32
|
rlocval |
|- ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) |
34 |
4 33
|
eqtrid |
|- ( ph -> L = ( ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) |
35 |
|
eqidd |
|- ( ph -> ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) |
36 |
|
eqid |
|- ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
37 |
36
|
imasvalstr |
|- ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) Struct <. 1 , ; 1 2 >. |
38 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
39 |
|
snsstp1 |
|- { <. ( Base ` ndx ) , ( B X. S ) >. } C_ { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } |
40 |
|
ssun1 |
|- { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } C_ ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) |
41 |
|
ssun1 |
|- ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) C_ ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
42 |
40 41
|
sstri |
|- { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } C_ ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
43 |
39 42
|
sstri |
|- { <. ( Base ` ndx ) , ( B X. S ) >. } C_ ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
44 |
1
|
fvexi |
|- B e. _V |
45 |
44
|
a1i |
|- ( ph -> B e. _V ) |
46 |
45 7
|
xpexd |
|- ( ph -> ( B X. S ) e. _V ) |
47 |
|
eqid |
|- ( Base ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = ( Base ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) |
48 |
35 37 38 43 46 47
|
strfv3 |
|- ( ph -> ( Base ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = ( B X. S ) ) |
49 |
48
|
eqcomd |
|- ( ph -> ( B X. S ) = ( Base ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) ) |
50 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
51 |
1 15 50 2 16 21 5 6 7
|
erler |
|- ( ph -> .~ Er ( B X. S ) ) |
52 |
|
tpex |
|- { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } e. _V |
53 |
|
tpex |
|- { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } e. _V |
54 |
52 53
|
unex |
|- ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) e. _V |
55 |
|
tpex |
|- { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } e. _V |
56 |
54 55
|
unex |
|- ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) e. _V |
57 |
56
|
a1i |
|- ( ph -> ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) e. _V ) |
58 |
32
|
ad2antrr |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> S C_ B ) |
59 |
58
|
ad2antrr |
|- ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) -> S C_ B ) |
60 |
59
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> S C_ B ) |
61 |
|
eqidd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. = <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. ) |
62 |
|
eqidd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. = <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
63 |
6
|
crnggrpd |
|- ( ph -> R e. Grp ) |
64 |
63
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> R e. Grp ) |
65 |
6
|
crngringd |
|- ( ph -> R e. Ring ) |
66 |
65
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> R e. Ring ) |
67 |
|
simplr |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> u .~ p ) |
68 |
1 5 58 67
|
erlcl1 |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> u e. ( B X. S ) ) |
69 |
68
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> u e. ( B X. S ) ) |
70 |
|
xp1st |
|- ( u e. ( B X. S ) -> ( 1st ` u ) e. B ) |
71 |
69 70
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` u ) e. B ) |
72 |
|
simpr |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> v .~ q ) |
73 |
1 5 58 72
|
erlcl1 |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> v e. ( B X. S ) ) |
74 |
73
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> v e. ( B X. S ) ) |
75 |
|
xp2nd |
|- ( v e. ( B X. S ) -> ( 2nd ` v ) e. S ) |
76 |
74 75
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` v ) e. S ) |
77 |
60 76
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` v ) e. B ) |
78 |
1 2 66 71 77
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` u ) .x. ( 2nd ` v ) ) e. B ) |
79 |
|
xp1st |
|- ( v e. ( B X. S ) -> ( 1st ` v ) e. B ) |
80 |
74 79
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` v ) e. B ) |
81 |
|
xp2nd |
|- ( u e. ( B X. S ) -> ( 2nd ` u ) e. S ) |
82 |
69 81
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` u ) e. S ) |
83 |
60 82
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` u ) e. B ) |
84 |
1 2 66 80 83
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` v ) .x. ( 2nd ` u ) ) e. B ) |
85 |
1 3 64 78 84
|
grpcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) e. B ) |
86 |
1 5 58 67
|
erlcl2 |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> p e. ( B X. S ) ) |
87 |
86
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> p e. ( B X. S ) ) |
88 |
|
xp1st |
|- ( p e. ( B X. S ) -> ( 1st ` p ) e. B ) |
89 |
87 88
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` p ) e. B ) |
90 |
1 5 58 72
|
erlcl2 |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> q e. ( B X. S ) ) |
91 |
90
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> q e. ( B X. S ) ) |
92 |
|
xp2nd |
|- ( q e. ( B X. S ) -> ( 2nd ` q ) e. S ) |
93 |
91 92
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` q ) e. S ) |
94 |
60 93
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` q ) e. B ) |
95 |
1 2 66 89 94
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` p ) .x. ( 2nd ` q ) ) e. B ) |
96 |
|
xp1st |
|- ( q e. ( B X. S ) -> ( 1st ` q ) e. B ) |
97 |
91 96
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` q ) e. B ) |
98 |
|
xp2nd |
|- ( p e. ( B X. S ) -> ( 2nd ` p ) e. S ) |
99 |
87 98
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` p ) e. S ) |
100 |
60 99
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` p ) e. B ) |
101 |
1 2 66 97 100
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` q ) .x. ( 2nd ` p ) ) e. B ) |
102 |
1 3 64 95 101
|
grpcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) e. B ) |
103 |
7
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
104 |
29 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
105 |
104
|
submcl |
|- ( ( S e. ( SubMnd ` ( mulGrp ` R ) ) /\ ( 2nd ` u ) e. S /\ ( 2nd ` v ) e. S ) -> ( ( 2nd ` u ) .x. ( 2nd ` v ) ) e. S ) |
106 |
103 82 76 105
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` u ) .x. ( 2nd ` v ) ) e. S ) |
107 |
104
|
submcl |
|- ( ( S e. ( SubMnd ` ( mulGrp ` R ) ) /\ ( 2nd ` p ) e. S /\ ( 2nd ` q ) e. S ) -> ( ( 2nd ` p ) .x. ( 2nd ` q ) ) e. S ) |
108 |
103 99 93 107
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` p ) .x. ( 2nd ` q ) ) e. S ) |
109 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> f e. S ) |
110 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> g e. S ) |
111 |
104
|
submcl |
|- ( ( S e. ( SubMnd ` ( mulGrp ` R ) ) /\ f e. S /\ g e. S ) -> ( f .x. g ) e. S ) |
112 |
103 109 110 111
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. g ) e. S ) |
113 |
60 108
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` p ) .x. ( 2nd ` q ) ) e. B ) |
114 |
1 3 2
|
ringdir |
|- ( ( R e. Ring /\ ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) e. B /\ ( ( 1st ` v ) .x. ( 2nd ` u ) ) e. B /\ ( ( 2nd ` p ) .x. ( 2nd ` q ) ) e. B ) ) -> ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) = ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) .+ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) |
115 |
66 78 84 113 114
|
syl13anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) = ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) .+ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) |
116 |
60 106
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` u ) .x. ( 2nd ` v ) ) e. B ) |
117 |
1 3 2
|
ringdir |
|- ( ( R e. Ring /\ ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) e. B /\ ( ( 1st ` q ) .x. ( 2nd ` p ) ) e. B /\ ( ( 2nd ` u ) .x. ( 2nd ` v ) ) e. B ) ) -> ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) = ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) .+ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) |
118 |
66 95 101 116 117
|
syl13anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) = ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) .+ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) |
119 |
115 118
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) = ( ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) .+ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) .+ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) |
120 |
119
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( ( f .x. g ) .x. ( ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) .+ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) .+ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) ) |
121 |
60 109
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> f e. B ) |
122 |
60 110
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> g e. B ) |
123 |
1 2 66 121 122
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. g ) e. B ) |
124 |
1 2 66 78 113
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) e. B ) |
125 |
1 2 66 84 113
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) e. B ) |
126 |
1 3 64 124 125
|
grpcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) .+ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) e. B ) |
127 |
1 2 66 95 116
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) e. B ) |
128 |
1 2 66 101 116
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) e. B ) |
129 |
1 3 64 127 128
|
grpcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) .+ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) e. B ) |
130 |
1 2 16 66 123 126 129
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) .+ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) .+ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) = ( ( ( f .x. g ) .x. ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) .+ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) .+ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) ) |
131 |
1 3 2
|
ringdi |
|- ( ( R e. Ring /\ ( ( f .x. g ) e. B /\ ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) e. B /\ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) e. B ) ) -> ( ( f .x. g ) .x. ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) .+ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) = ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) .+ ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) ) |
132 |
66 123 124 125 131
|
syl13anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) .+ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) = ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) .+ ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) ) |
133 |
1 3 2
|
ringdi |
|- ( ( R e. Ring /\ ( ( f .x. g ) e. B /\ ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) e. B /\ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) e. B ) ) -> ( ( f .x. g ) .x. ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) .+ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) .+ ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) |
134 |
66 123 127 128 133
|
syl13anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) .+ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) .+ ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) |
135 |
132 134
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. g ) .x. ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) .+ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) .+ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) = ( ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) .+ ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) ( -g ` R ) ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) .+ ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) ) |
136 |
66
|
ringabld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> R e. Abel ) |
137 |
1 2 66 123 124
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) e. B ) |
138 |
1 2 66 123 125
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) e. B ) |
139 |
1 2 66 123 127
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) e. B ) |
140 |
1 2 66 123 128
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) e. B ) |
141 |
1 3 16
|
ablsub4 |
|- ( ( R e. Abel /\ ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) e. B /\ ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) e. B ) /\ ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) e. B /\ ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) e. B ) ) -> ( ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) .+ ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) ( -g ` R ) ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) .+ ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) = ( ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) .+ ( ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) ) |
142 |
136 137 138 139 140 141
|
syl122anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) .+ ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) ( -g ` R ) ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) .+ ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) = ( ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) .+ ( ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) ) |
143 |
29
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
144 |
6 143
|
syl |
|- ( ph -> ( mulGrp ` R ) e. CMnd ) |
145 |
144
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( mulGrp ` R ) e. CMnd ) |
146 |
30 104 145 121 122 71 77 100 94
|
cmn246135 |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) = ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ) ) |
147 |
30 104 145 121 122 89 94 83 77
|
cmn246135 |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) = ( ( g .x. ( ( 2nd ` q ) .x. ( 2nd ` v ) ) ) .x. ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) |
148 |
30 104
|
cmncom |
|- ( ( ( mulGrp ` R ) e. CMnd /\ ( 2nd ` v ) e. B /\ ( 2nd ` q ) e. B ) -> ( ( 2nd ` v ) .x. ( 2nd ` q ) ) = ( ( 2nd ` q ) .x. ( 2nd ` v ) ) ) |
149 |
145 77 94 148
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` v ) .x. ( 2nd ` q ) ) = ( ( 2nd ` q ) .x. ( 2nd ` v ) ) ) |
150 |
149
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) = ( g .x. ( ( 2nd ` q ) .x. ( 2nd ` v ) ) ) ) |
151 |
150
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( ( g .x. ( ( 2nd ` q ) .x. ( 2nd ` v ) ) ) .x. ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) |
152 |
147 151
|
eqtr4d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) = ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) |
153 |
146 152
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ) ( -g ` R ) ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) ) |
154 |
1 2 66 71 100
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` u ) .x. ( 2nd ` p ) ) e. B ) |
155 |
1 2 66 89 83
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` p ) .x. ( 2nd ` u ) ) e. B ) |
156 |
1 2 16 66 121 154 155
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ( -g ` R ) ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) |
157 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) |
158 |
156 157
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ( -g ` R ) ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) |
159 |
158
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ( -g ` R ) ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) = ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( 0g ` R ) ) ) |
160 |
1 2 66 77 94
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` v ) .x. ( 2nd ` q ) ) e. B ) |
161 |
1 2 66 122 160
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) e. B ) |
162 |
1 2 66 121 154
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) e. B ) |
163 |
1 2 66 121 155
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) e. B ) |
164 |
1 2 16 66 161 162 163
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ( -g ` R ) ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) = ( ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ) ( -g ` R ) ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) ) |
165 |
1 2 15 66 161
|
ringrzd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
166 |
159 164 165
|
3eqtr3d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ) ( -g ` R ) ( ( g .x. ( ( 2nd ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) = ( 0g ` R ) ) |
167 |
153 166
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( 0g ` R ) ) |
168 |
30 104 145 121 122 80 83 100 94
|
cmn145236 |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) = ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ) ) |
169 |
30 104 145 121 122 97 100 83 77
|
cmn145236 |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) = ( ( f .x. ( ( 2nd ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) |
170 |
30 104
|
cmncom |
|- ( ( ( mulGrp ` R ) e. CMnd /\ ( 2nd ` p ) e. B /\ ( 2nd ` u ) e. B ) -> ( ( 2nd ` p ) .x. ( 2nd ` u ) ) = ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) |
171 |
145 100 83 170
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` p ) .x. ( 2nd ` u ) ) = ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) |
172 |
171
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. ( ( 2nd ` p ) .x. ( 2nd ` u ) ) ) = ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) ) |
173 |
172
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. ( ( 2nd ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) |
174 |
169 173
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) = ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) |
175 |
168 174
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) ) |
176 |
1 2 66 80 94
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` v ) .x. ( 2nd ` q ) ) e. B ) |
177 |
1 2 66 97 77
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` q ) .x. ( 2nd ` v ) ) e. B ) |
178 |
1 2 16 66 122 176 177
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) |
179 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) |
180 |
178 179
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) |
181 |
180
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) = ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( 0g ` R ) ) ) |
182 |
1 2 66 83 100
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` u ) .x. ( 2nd ` p ) ) e. B ) |
183 |
1 2 66 121 182
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) e. B ) |
184 |
1 2 66 122 176
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) e. B ) |
185 |
1 2 66 122 177
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) e. B ) |
186 |
1 2 16 66 183 184 185
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) = ( ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) ) |
187 |
1 2 15 66 183
|
ringrzd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
188 |
181 186 187
|
3eqtr3d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. ( ( 2nd ` u ) .x. ( 2nd ` p ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) = ( 0g ` R ) ) |
189 |
175 188
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( 0g ` R ) ) |
190 |
167 189
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) .+ ( ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) = ( ( 0g ` R ) .+ ( 0g ` R ) ) ) |
191 |
1 15
|
grpidcl |
|- ( R e. Grp -> ( 0g ` R ) e. B ) |
192 |
64 191
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 0g ` R ) e. B ) |
193 |
1 3 15 64 192
|
grplidd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 0g ` R ) .+ ( 0g ` R ) ) = ( 0g ` R ) ) |
194 |
190 193
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) .+ ( ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) = ( 0g ` R ) ) |
195 |
135 142 194
|
3eqtrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. g ) .x. ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) .+ ( ( ( 1st ` v ) .x. ( 2nd ` u ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) .+ ( ( ( 1st ` q ) .x. ( 2nd ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) = ( 0g ` R ) ) |
196 |
120 130 195
|
3eqtrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( 0g ` R ) ) |
197 |
1 5 60 15 2 16 61 62 85 102 106 108 112 196
|
erlbrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. .~ <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
198 |
72
|
ad2antrr |
|- ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) -> v .~ q ) |
199 |
1 5 59 15 2 16 198
|
erldi |
|- ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) -> E. g e. S ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) |
200 |
197 199
|
r19.29a |
|- ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) -> <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. .~ <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
201 |
1 5 58 15 2 16 67
|
erldi |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> E. f e. S ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) |
202 |
200 201
|
r19.29a |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. .~ <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
203 |
|
plusgid |
|- +g = Slot ( +g ` ndx ) |
204 |
|
snsstp2 |
|- { <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } C_ { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } |
205 |
204 42
|
sstri |
|- { <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } C_ ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
206 |
24
|
mpoexg |
|- ( ( ( B X. S ) e. _V /\ ( B X. S ) e. _V ) -> ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) e. _V ) |
207 |
46 46 206
|
syl2anc |
|- ( ph -> ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) e. _V ) |
208 |
|
eqid |
|- ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) |
209 |
35 37 203 205 207 208
|
strfv3 |
|- ( ph -> ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) ) |
210 |
209
|
ad2antrr |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) ) |
211 |
210
|
oveqd |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( u ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) = ( u ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) v ) ) |
212 |
|
opex |
|- <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. e. _V |
213 |
212
|
a1i |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. e. _V ) |
214 |
|
simpl |
|- ( ( a = u /\ b = v ) -> a = u ) |
215 |
214
|
fveq2d |
|- ( ( a = u /\ b = v ) -> ( 1st ` a ) = ( 1st ` u ) ) |
216 |
|
simpr |
|- ( ( a = u /\ b = v ) -> b = v ) |
217 |
216
|
fveq2d |
|- ( ( a = u /\ b = v ) -> ( 2nd ` b ) = ( 2nd ` v ) ) |
218 |
215 217
|
oveq12d |
|- ( ( a = u /\ b = v ) -> ( ( 1st ` a ) .x. ( 2nd ` b ) ) = ( ( 1st ` u ) .x. ( 2nd ` v ) ) ) |
219 |
216
|
fveq2d |
|- ( ( a = u /\ b = v ) -> ( 1st ` b ) = ( 1st ` v ) ) |
220 |
214
|
fveq2d |
|- ( ( a = u /\ b = v ) -> ( 2nd ` a ) = ( 2nd ` u ) ) |
221 |
219 220
|
oveq12d |
|- ( ( a = u /\ b = v ) -> ( ( 1st ` b ) .x. ( 2nd ` a ) ) = ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) |
222 |
218 221
|
oveq12d |
|- ( ( a = u /\ b = v ) -> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) = ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) ) |
223 |
220 217
|
oveq12d |
|- ( ( a = u /\ b = v ) -> ( ( 2nd ` a ) .x. ( 2nd ` b ) ) = ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) |
224 |
222 223
|
opeq12d |
|- ( ( a = u /\ b = v ) -> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. = <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. ) |
225 |
224 24
|
ovmpoga |
|- ( ( u e. ( B X. S ) /\ v e. ( B X. S ) /\ <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. e. _V ) -> ( u ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) v ) = <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. ) |
226 |
68 73 213 225
|
syl3anc |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( u ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) v ) = <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. ) |
227 |
211 226
|
eqtrd |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( u ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) = <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. ) |
228 |
210
|
oveqd |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( p ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) = ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) ) |
229 |
|
opex |
|- <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. e. _V |
230 |
229
|
a1i |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. e. _V ) |
231 |
|
simpl |
|- ( ( a = p /\ b = q ) -> a = p ) |
232 |
231
|
fveq2d |
|- ( ( a = p /\ b = q ) -> ( 1st ` a ) = ( 1st ` p ) ) |
233 |
|
simpr |
|- ( ( a = p /\ b = q ) -> b = q ) |
234 |
233
|
fveq2d |
|- ( ( a = p /\ b = q ) -> ( 2nd ` b ) = ( 2nd ` q ) ) |
235 |
232 234
|
oveq12d |
|- ( ( a = p /\ b = q ) -> ( ( 1st ` a ) .x. ( 2nd ` b ) ) = ( ( 1st ` p ) .x. ( 2nd ` q ) ) ) |
236 |
233
|
fveq2d |
|- ( ( a = p /\ b = q ) -> ( 1st ` b ) = ( 1st ` q ) ) |
237 |
231
|
fveq2d |
|- ( ( a = p /\ b = q ) -> ( 2nd ` a ) = ( 2nd ` p ) ) |
238 |
236 237
|
oveq12d |
|- ( ( a = p /\ b = q ) -> ( ( 1st ` b ) .x. ( 2nd ` a ) ) = ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) |
239 |
235 238
|
oveq12d |
|- ( ( a = p /\ b = q ) -> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) = ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) ) |
240 |
237 234
|
oveq12d |
|- ( ( a = p /\ b = q ) -> ( ( 2nd ` a ) .x. ( 2nd ` b ) ) = ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) |
241 |
239 240
|
opeq12d |
|- ( ( a = p /\ b = q ) -> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. = <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
242 |
241 24
|
ovmpoga |
|- ( ( p e. ( B X. S ) /\ q e. ( B X. S ) /\ <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. e. _V ) -> ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) = <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
243 |
86 90 230 242
|
syl3anc |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) = <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
244 |
228 243
|
eqtrd |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( p ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) = <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
245 |
227 244
|
breq12d |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( ( u ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) .~ ( p ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) <-> <. ( ( ( 1st ` u ) .x. ( 2nd ` v ) ) .+ ( ( 1st ` v ) .x. ( 2nd ` u ) ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. .~ <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) ) |
246 |
202 245
|
mpbird |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( u ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) .~ ( p ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) ) |
247 |
246
|
anasss |
|- ( ( ph /\ ( u .~ p /\ v .~ q ) ) -> ( u ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) .~ ( p ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) ) |
248 |
247
|
ex |
|- ( ph -> ( ( u .~ p /\ v .~ q ) -> ( u ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) .~ ( p ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) ) ) |
249 |
209
|
oveqd |
|- ( ph -> ( p ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) = ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) ) |
250 |
249
|
ad2antrr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( p ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) = ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) ) |
251 |
|
simplr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> p e. ( B X. S ) ) |
252 |
|
simpr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> q e. ( B X. S ) ) |
253 |
229
|
a1i |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. e. _V ) |
254 |
251 252 253 242
|
syl3anc |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) = <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
255 |
63
|
ad2antrr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> R e. Grp ) |
256 |
65
|
ad2antrr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> R e. Ring ) |
257 |
251 88
|
syl |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( 1st ` p ) e. B ) |
258 |
32
|
ad2antrr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> S C_ B ) |
259 |
252 92
|
syl |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( 2nd ` q ) e. S ) |
260 |
258 259
|
sseldd |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( 2nd ` q ) e. B ) |
261 |
1 2 256 257 260
|
ringcld |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( ( 1st ` p ) .x. ( 2nd ` q ) ) e. B ) |
262 |
252 96
|
syl |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( 1st ` q ) e. B ) |
263 |
251 98
|
syl |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( 2nd ` p ) e. S ) |
264 |
258 263
|
sseldd |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( 2nd ` p ) e. B ) |
265 |
1 2 256 262 264
|
ringcld |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( ( 1st ` q ) .x. ( 2nd ` p ) ) e. B ) |
266 |
1 3 255 261 265
|
grpcld |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) e. B ) |
267 |
7
|
ad2antrr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
268 |
267 263 259 107
|
syl3anc |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( ( 2nd ` p ) .x. ( 2nd ` q ) ) e. S ) |
269 |
266 268
|
opelxpd |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> <. ( ( ( 1st ` p ) .x. ( 2nd ` q ) ) .+ ( ( 1st ` q ) .x. ( 2nd ` p ) ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. e. ( B X. S ) ) |
270 |
254 269
|
eqeltrd |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) e. ( B X. S ) ) |
271 |
250 270
|
eqeltrd |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( p ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) e. ( B X. S ) ) |
272 |
271
|
anasss |
|- ( ( ph /\ ( p e. ( B X. S ) /\ q e. ( B X. S ) ) ) -> ( p ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) e. ( B X. S ) ) |
273 |
34 49 51 57 248 272 208 12
|
qusaddval |
|- ( ( ph /\ <. E , G >. e. ( B X. S ) /\ <. F , H >. e. ( B X. S ) ) -> ( [ <. E , G >. ] .~ .(+) [ <. F , H >. ] .~ ) = [ ( <. E , G >. ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) <. F , H >. ) ] .~ ) |
274 |
13 14 273
|
mpd3an23 |
|- ( ph -> ( [ <. E , G >. ] .~ .(+) [ <. F , H >. ] .~ ) = [ ( <. E , G >. ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) <. F , H >. ) ] .~ ) |
275 |
209
|
oveqd |
|- ( ph -> ( <. E , G >. ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) <. F , H >. ) = ( <. E , G >. ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) <. F , H >. ) ) |
276 |
24
|
a1i |
|- ( ph -> ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) ) |
277 |
|
simprl |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> a = <. E , G >. ) |
278 |
277
|
fveq2d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` a ) = ( 1st ` <. E , G >. ) ) |
279 |
8
|
adantr |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> E e. B ) |
280 |
10
|
adantr |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> G e. S ) |
281 |
|
op1stg |
|- ( ( E e. B /\ G e. S ) -> ( 1st ` <. E , G >. ) = E ) |
282 |
279 280 281
|
syl2anc |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` <. E , G >. ) = E ) |
283 |
278 282
|
eqtrd |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` a ) = E ) |
284 |
|
simprr |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> b = <. F , H >. ) |
285 |
284
|
fveq2d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` b ) = ( 2nd ` <. F , H >. ) ) |
286 |
9
|
adantr |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> F e. B ) |
287 |
11
|
adantr |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> H e. S ) |
288 |
|
op2ndg |
|- ( ( F e. B /\ H e. S ) -> ( 2nd ` <. F , H >. ) = H ) |
289 |
286 287 288
|
syl2anc |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` <. F , H >. ) = H ) |
290 |
285 289
|
eqtrd |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` b ) = H ) |
291 |
283 290
|
oveq12d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( ( 1st ` a ) .x. ( 2nd ` b ) ) = ( E .x. H ) ) |
292 |
284
|
fveq2d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` b ) = ( 1st ` <. F , H >. ) ) |
293 |
|
op1stg |
|- ( ( F e. B /\ H e. S ) -> ( 1st ` <. F , H >. ) = F ) |
294 |
286 287 293
|
syl2anc |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` <. F , H >. ) = F ) |
295 |
292 294
|
eqtrd |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` b ) = F ) |
296 |
277
|
fveq2d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` a ) = ( 2nd ` <. E , G >. ) ) |
297 |
|
op2ndg |
|- ( ( E e. B /\ G e. S ) -> ( 2nd ` <. E , G >. ) = G ) |
298 |
279 280 297
|
syl2anc |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` <. E , G >. ) = G ) |
299 |
296 298
|
eqtrd |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` a ) = G ) |
300 |
295 299
|
oveq12d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( ( 1st ` b ) .x. ( 2nd ` a ) ) = ( F .x. G ) ) |
301 |
291 300
|
oveq12d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) = ( ( E .x. H ) .+ ( F .x. G ) ) ) |
302 |
299 290
|
oveq12d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( ( 2nd ` a ) .x. ( 2nd ` b ) ) = ( G .x. H ) ) |
303 |
301 302
|
opeq12d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. = <. ( ( E .x. H ) .+ ( F .x. G ) ) , ( G .x. H ) >. ) |
304 |
|
opex |
|- <. ( ( E .x. H ) .+ ( F .x. G ) ) , ( G .x. H ) >. e. _V |
305 |
304
|
a1i |
|- ( ph -> <. ( ( E .x. H ) .+ ( F .x. G ) ) , ( G .x. H ) >. e. _V ) |
306 |
276 303 13 14 305
|
ovmpod |
|- ( ph -> ( <. E , G >. ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) <. F , H >. ) = <. ( ( E .x. H ) .+ ( F .x. G ) ) , ( G .x. H ) >. ) |
307 |
275 306
|
eqtrd |
|- ( ph -> ( <. E , G >. ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) <. F , H >. ) = <. ( ( E .x. H ) .+ ( F .x. G ) ) , ( G .x. H ) >. ) |
308 |
307
|
eceq1d |
|- ( ph -> [ ( <. E , G >. ( +g ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) <. F , H >. ) ] .~ = [ <. ( ( E .x. H ) .+ ( F .x. G ) ) , ( G .x. H ) >. ] .~ ) |
309 |
274 308
|
eqtrd |
|- ( ph -> ( [ <. E , G >. ] .~ .(+) [ <. F , H >. ] .~ ) = [ <. ( ( E .x. H ) .+ ( F .x. G ) ) , ( G .x. H ) >. ] .~ ) |