Metamath Proof Explorer


Theorem rloccring

Description: The ring localization L of a commutative ring R by a multiplicatively closed set S is itself a commutative ring. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rlocaddval.1
|- B = ( Base ` R )
rlocaddval.2
|- .x. = ( .r ` R )
rlocaddval.3
|- .+ = ( +g ` R )
rlocaddval.4
|- L = ( R RLocal S )
rlocaddval.5
|- .~ = ( R ~RL S )
rlocaddval.r
|- ( ph -> R e. CRing )
rlocaddval.s
|- ( ph -> S e. ( SubMnd ` ( mulGrp ` R ) ) )
Assertion rloccring
|- ( ph -> L e. CRing )

Proof

Step Hyp Ref Expression
1 rlocaddval.1
 |-  B = ( Base ` R )
2 rlocaddval.2
 |-  .x. = ( .r ` R )
3 rlocaddval.3
 |-  .+ = ( +g ` R )
4 rlocaddval.4
 |-  L = ( R RLocal S )
5 rlocaddval.5
 |-  .~ = ( R ~RL S )
6 rlocaddval.r
 |-  ( ph -> R e. CRing )
7 rlocaddval.s
 |-  ( ph -> S e. ( SubMnd ` ( mulGrp ` R ) ) )
8 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
9 eqid
 |-  ( -g ` R ) = ( -g ` R )
10 eqid
 |-  ( B X. S ) = ( B X. S )
11 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
12 11 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` R ) )
13 12 submss
 |-  ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> S C_ B )
14 7 13 syl
 |-  ( ph -> S C_ B )
15 1 8 2 9 10 4 5 6 14 rlocbas
 |-  ( ph -> ( ( B X. S ) /. .~ ) = ( Base ` L ) )
16 eqidd
 |-  ( ph -> ( +g ` L ) = ( +g ` L ) )
17 eqidd
 |-  ( ph -> ( .r ` L ) = ( .r ` L ) )
18 eqid
 |-  ( Base ` L ) = ( Base ` L )
19 eqid
 |-  ( 0g ` L ) = ( 0g ` L )
20 eqid
 |-  ( +g ` L ) = ( +g ` L )
21 6 crngringd
 |-  ( ph -> R e. Ring )
22 1 8 ring0cl
 |-  ( R e. Ring -> ( 0g ` R ) e. B )
23 21 22 syl
 |-  ( ph -> ( 0g ` R ) e. B )
24 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
25 11 24 ringidval
 |-  ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) )
26 25 subm0cl
 |-  ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> ( 1r ` R ) e. S )
27 7 26 syl
 |-  ( ph -> ( 1r ` R ) e. S )
28 23 27 opelxpd
 |-  ( ph -> <. ( 0g ` R ) , ( 1r ` R ) >. e. ( B X. S ) )
29 5 ovexi
 |-  .~ e. _V
30 29 ecelqsi
 |-  ( <. ( 0g ` R ) , ( 1r ` R ) >. e. ( B X. S ) -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ e. ( ( B X. S ) /. .~ ) )
31 28 30 syl
 |-  ( ph -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ e. ( ( B X. S ) /. .~ ) )
32 31 15 eleqtrd
 |-  ( ph -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ e. ( Base ` L ) )
33 15 eleq2d
 |-  ( ph -> ( x e. ( ( B X. S ) /. .~ ) <-> x e. ( Base ` L ) ) )
34 33 biimpar
 |-  ( ( ph /\ x e. ( Base ` L ) ) -> x e. ( ( B X. S ) /. .~ ) )
35 simpr
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> x = [ <. a , b >. ] .~ )
36 35 oveq2d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) x ) = ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) )
37 21 ad4antr
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> R e. Ring )
38 7 ad4antr
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) )
39 38 13 syl
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> S C_ B )
40 simplr
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> b e. S )
41 39 40 sseldd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> b e. B )
42 1 2 8 37 41 ringlzd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 0g ` R ) .x. b ) = ( 0g ` R ) )
43 simpllr
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> a e. B )
44 1 2 24 37 43 ringridmd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( a .x. ( 1r ` R ) ) = a )
45 42 44 oveq12d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( 0g ` R ) .x. b ) ( +g ` R ) ( a .x. ( 1r ` R ) ) ) = ( ( 0g ` R ) ( +g ` R ) a ) )
46 eqid
 |-  ( +g ` R ) = ( +g ` R )
47 37 ringgrpd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> R e. Grp )
48 1 46 8 47 43 grplidd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 0g ` R ) ( +g ` R ) a ) = a )
49 45 48 eqtrd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( 0g ` R ) .x. b ) ( +g ` R ) ( a .x. ( 1r ` R ) ) ) = a )
50 1 2 24 37 41 ringlidmd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 1r ` R ) .x. b ) = b )
51 49 50 opeq12d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( ( ( 0g ` R ) .x. b ) ( +g ` R ) ( a .x. ( 1r ` R ) ) ) , ( ( 1r ` R ) .x. b ) >. = <. a , b >. )
52 51 eceq1d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( ( ( 0g ` R ) .x. b ) ( +g ` R ) ( a .x. ( 1r ` R ) ) ) , ( ( 1r ` R ) .x. b ) >. ] .~ = [ <. a , b >. ] .~ )
53 6 ad4antr
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> R e. CRing )
54 23 ad4antr
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( 0g ` R ) e. B )
55 38 26 syl
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( 1r ` R ) e. S )
56 1 2 46 4 5 53 38 54 43 55 40 20 rlocaddval
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) = [ <. ( ( ( 0g ` R ) .x. b ) ( +g ` R ) ( a .x. ( 1r ` R ) ) ) , ( ( 1r ` R ) .x. b ) >. ] .~ )
57 52 56 35 3eqtr4d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) = x )
58 36 57 eqtrd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) x ) = x )
59 simpr
 |-  ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> x e. ( ( B X. S ) /. .~ ) )
60 59 elrlocbasi
 |-  ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> E. a e. B E. b e. S x = [ <. a , b >. ] .~ )
61 58 60 r19.29vva
 |-  ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) x ) = x )
62 34 61 syldan
 |-  ( ( ph /\ x e. ( Base ` L ) ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) x ) = x )
63 1 2 3 4 5 53 38 43 54 40 55 20 rlocaddval
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) = [ <. ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) , ( b .x. ( 1r ` R ) ) >. ] .~ )
64 35 oveq1d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) = ( [ <. a , b >. ] .~ ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) )
65 44 42 oveq12d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) = ( a .+ ( 0g ` R ) ) )
66 1 3 8 47 43 grpridd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( a .+ ( 0g ` R ) ) = a )
67 65 66 eqtr2d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> a = ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) )
68 1 2 24 37 41 ringridmd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( b .x. ( 1r ` R ) ) = b )
69 68 eqcomd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> b = ( b .x. ( 1r ` R ) ) )
70 67 69 opeq12d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. a , b >. = <. ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) , ( b .x. ( 1r ` R ) ) >. )
71 70 eceq1d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. a , b >. ] .~ = [ <. ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) , ( b .x. ( 1r ` R ) ) >. ] .~ )
72 35 71 eqtrd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> x = [ <. ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) , ( b .x. ( 1r ` R ) ) >. ] .~ )
73 63 64 72 3eqtr4d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) = x )
74 73 60 r19.29vva
 |-  ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> ( x ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) = x )
75 34 74 syldan
 |-  ( ( ph /\ x e. ( Base ` L ) ) -> ( x ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) = x )
76 18 19 20 32 62 75 ismgmid2
 |-  ( ph -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ = ( 0g ` L ) )
77 simp-4r
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> x = [ <. a , b >. ] .~ )
78 simpr
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> y = [ <. c , d >. ] .~ )
79 77 78 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( +g ` L ) y ) = ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) )
80 6 ad8antr
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> R e. CRing )
81 7 ad8antr
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) )
82 simp-6r
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> a e. B )
83 simpllr
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> c e. B )
84 simp-5r
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> b e. S )
85 simplr
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> d e. S )
86 1 2 3 4 5 80 81 82 83 84 85 20 rlocaddval
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) = [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ )
87 80 crnggrpd
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> R e. Grp )
88 21 ad8antr
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> R e. Ring )
89 81 13 syl
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> S C_ B )
90 89 85 sseldd
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> d e. B )
91 1 2 88 82 90 ringcld
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( a .x. d ) e. B )
92 89 84 sseldd
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> b e. B )
93 1 2 88 83 92 ringcld
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( c .x. b ) e. B )
94 1 3 87 91 93 grpcld
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( ( a .x. d ) .+ ( c .x. b ) ) e. B )
95 11 2 mgpplusg
 |-  .x. = ( +g ` ( mulGrp ` R ) )
96 95 81 84 85 submcld
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( b .x. d ) e. S )
97 94 96 opelxpd
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. e. ( B X. S ) )
98 29 ecelqsi
 |-  ( <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. e. ( B X. S ) -> [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ e. ( ( B X. S ) /. .~ ) )
99 97 98 syl
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ e. ( ( B X. S ) /. .~ ) )
100 86 99 eqeltrd
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) e. ( ( B X. S ) /. .~ ) )
101 79 100 eqeltrd
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( +g ` L ) y ) e. ( ( B X. S ) /. .~ ) )
102 simp-4r
 |-  ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> y e. ( ( B X. S ) /. .~ ) )
103 102 elrlocbasi
 |-  ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> E. c e. B E. d e. S y = [ <. c , d >. ] .~ )
104 101 103 r19.29vva
 |-  ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( +g ` L ) y ) e. ( ( B X. S ) /. .~ ) )
105 simplr
 |-  ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) -> x e. ( ( B X. S ) /. .~ ) )
106 105 elrlocbasi
 |-  ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) -> E. a e. B E. b e. S x = [ <. a , b >. ] .~ )
107 104 106 r19.29vva
 |-  ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( +g ` L ) y ) e. ( ( B X. S ) /. .~ ) )
108 107 3impa
 |-  ( ( ph /\ x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( +g ` L ) y ) e. ( ( B X. S ) /. .~ ) )
109 6 ad10antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> R e. CRing )
110 109 crnggrpd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> R e. Grp )
111 21 ad10antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> R e. Ring )
112 simp-9r
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> a e. B )
113 7 ad10antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) )
114 113 13 syl
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> S C_ B )
115 simp-5r
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> d e. S )
116 114 115 sseldd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> d e. B )
117 1 2 111 112 116 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( a .x. d ) e. B )
118 simplr
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> f e. S )
119 114 118 sseldd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> f e. B )
120 1 2 111 117 119 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. d ) .x. f ) e. B )
121 simp-6r
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> c e. B )
122 simp-8r
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> b e. S )
123 114 122 sseldd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> b e. B )
124 1 2 111 121 123 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( c .x. b ) e. B )
125 1 2 111 124 119 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. b ) .x. f ) e. B )
126 simpllr
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> e e. B )
127 1 2 111 123 116 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. d ) e. B )
128 1 2 111 126 127 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( e .x. ( b .x. d ) ) e. B )
129 1 3 110 120 125 128 grpassd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( ( a .x. d ) .x. f ) .+ ( ( c .x. b ) .x. f ) ) .+ ( e .x. ( b .x. d ) ) ) = ( ( ( a .x. d ) .x. f ) .+ ( ( ( c .x. b ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) ) )
130 1 2 111 112 116 119 ringassd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. d ) .x. f ) = ( a .x. ( d .x. f ) ) )
131 1 2 109 121 123 119 cringmul32d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. b ) .x. f ) = ( ( c .x. f ) .x. b ) )
132 1 2 109 126 123 116 crng12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( e .x. ( b .x. d ) ) = ( b .x. ( e .x. d ) ) )
133 1 2 111 126 116 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( e .x. d ) e. B )
134 1 2 109 123 133 crngcomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( e .x. d ) ) = ( ( e .x. d ) .x. b ) )
135 132 134 eqtrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( e .x. ( b .x. d ) ) = ( ( e .x. d ) .x. b ) )
136 131 135 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( c .x. b ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) = ( ( ( c .x. f ) .x. b ) .+ ( ( e .x. d ) .x. b ) ) )
137 130 136 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. d ) .x. f ) .+ ( ( ( c .x. b ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) ) = ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .x. b ) .+ ( ( e .x. d ) .x. b ) ) ) )
138 129 137 eqtrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( ( a .x. d ) .x. f ) .+ ( ( c .x. b ) .x. f ) ) .+ ( e .x. ( b .x. d ) ) ) = ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .x. b ) .+ ( ( e .x. d ) .x. b ) ) ) )
139 1 3 2 111 117 124 119 ringdird
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) = ( ( ( a .x. d ) .x. f ) .+ ( ( c .x. b ) .x. f ) ) )
140 139 oveq1d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) = ( ( ( ( a .x. d ) .x. f ) .+ ( ( c .x. b ) .x. f ) ) .+ ( e .x. ( b .x. d ) ) ) )
141 1 2 111 121 119 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( c .x. f ) e. B )
142 1 3 2 111 141 133 123 ringdird
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) = ( ( ( c .x. f ) .x. b ) .+ ( ( e .x. d ) .x. b ) ) )
143 142 oveq2d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) ) = ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .x. b ) .+ ( ( e .x. d ) .x. b ) ) ) )
144 138 140 143 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) = ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) ) )
145 1 2 111 123 116 119 ringassd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. f ) = ( b .x. ( d .x. f ) ) )
146 144 145 opeq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. f ) >. = <. ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) ) , ( b .x. ( d .x. f ) ) >. )
147 146 eceq1d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> [ <. ( ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. f ) >. ] .~ = [ <. ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) ) , ( b .x. ( d .x. f ) ) >. ] .~ )
148 1 3 110 117 124 grpcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. d ) .+ ( c .x. b ) ) e. B )
149 95 113 122 115 submcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. d ) e. S )
150 1 2 3 4 5 109 113 148 126 149 118 20 rlocaddval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) = [ <. ( ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. f ) >. ] .~ )
151 1 3 110 141 133 grpcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. f ) .+ ( e .x. d ) ) e. B )
152 95 113 115 118 submcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( d .x. f ) e. S )
153 1 2 3 4 5 109 113 112 151 122 152 20 rlocaddval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) = [ <. ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) ) , ( b .x. ( d .x. f ) ) >. ] .~ )
154 147 150 153 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) = ( [ <. a , b >. ] .~ ( +g ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) )
155 1 2 3 4 5 109 113 112 121 122 115 20 rlocaddval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) = [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ )
156 155 oveq1d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) [ <. e , f >. ] .~ ) = ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) )
157 1 2 3 4 5 109 113 121 126 115 118 20 rlocaddval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) = [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ )
158 157 oveq2d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) = ( [ <. a , b >. ] .~ ( +g ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) )
159 154 156 158 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) [ <. e , f >. ] .~ ) = ( [ <. a , b >. ] .~ ( +g ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) )
160 simp-7r
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> x = [ <. a , b >. ] .~ )
161 simp-4r
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> y = [ <. c , d >. ] .~ )
162 160 161 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( +g ` L ) y ) = ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) )
163 simpr
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> z = [ <. e , f >. ] .~ )
164 162 163 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( +g ` L ) z ) = ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) [ <. e , f >. ] .~ ) )
165 161 163 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( y ( +g ` L ) z ) = ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) )
166 160 165 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( +g ` L ) ( y ( +g ` L ) z ) ) = ( [ <. a , b >. ] .~ ( +g ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) )
167 159 164 166 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( +g ` L ) z ) = ( x ( +g ` L ) ( y ( +g ` L ) z ) ) )
168 simpr3
 |-  ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> z e. ( ( B X. S ) /. .~ ) )
169 168 ad6antr
 |-  ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> z e. ( ( B X. S ) /. .~ ) )
170 169 elrlocbasi
 |-  ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> E. e e. B E. f e. S z = [ <. e , f >. ] .~ )
171 167 170 r19.29vva
 |-  ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( +g ` L ) z ) = ( x ( +g ` L ) ( y ( +g ` L ) z ) ) )
172 simpr2
 |-  ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> y e. ( ( B X. S ) /. .~ ) )
173 172 ad5ant12
 |-  ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> y e. ( ( B X. S ) /. .~ ) )
174 173 elrlocbasi
 |-  ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> E. c e. B E. d e. S y = [ <. c , d >. ] .~ )
175 171 174 r19.29vva
 |-  ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( +g ` L ) z ) = ( x ( +g ` L ) ( y ( +g ` L ) z ) ) )
176 simpr1
 |-  ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> x e. ( ( B X. S ) /. .~ ) )
177 176 elrlocbasi
 |-  ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> E. a e. B E. b e. S x = [ <. a , b >. ] .~ )
178 175 177 r19.29vva
 |-  ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> ( ( x ( +g ` L ) y ) ( +g ` L ) z ) = ( x ( +g ` L ) ( y ( +g ` L ) z ) ) )
179 15 16 108 178 31 61 74 ismndd
 |-  ( ph -> L e. Mnd )
180 eqid
 |-  ( invg ` R ) = ( invg ` R )
181 1 180 47 43 grpinvcld
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( invg ` R ) ` a ) e. B )
182 181 40 opelxpd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( ( invg ` R ) ` a ) , b >. e. ( B X. S ) )
183 29 ecelqsi
 |-  ( <. ( ( invg ` R ) ` a ) , b >. e. ( B X. S ) -> [ <. ( ( invg ` R ) ` a ) , b >. ] .~ e. ( ( B X. S ) /. .~ ) )
184 182 183 syl
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( ( invg ` R ) ` a ) , b >. ] .~ e. ( ( B X. S ) /. .~ ) )
185 simpr
 |-  ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ u = [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ) -> u = [ <. ( ( invg ` R ) ` a ) , b >. ] .~ )
186 simplr
 |-  ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ u = [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ) -> x = [ <. a , b >. ] .~ )
187 185 186 oveq12d
 |-  ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ u = [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ) -> ( u ( +g ` L ) x ) = ( [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) )
188 187 eqeq1d
 |-  ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ u = [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ) -> ( ( u ( +g ` L ) x ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ <-> ( [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) )
189 1 2 3 4 5 53 38 181 43 40 40 20 rlocaddval
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) = [ <. ( ( ( ( invg ` R ) ` a ) .x. b ) .+ ( a .x. b ) ) , ( b .x. b ) >. ] .~ )
190 1 3 8 180 47 43 grplinvd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( invg ` R ) ` a ) .+ a ) = ( 0g ` R ) )
191 190 oveq1d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( ( invg ` R ) ` a ) .+ a ) .x. b ) = ( ( 0g ` R ) .x. b ) )
192 1 3 2 37 181 43 41 ringdird
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( ( invg ` R ) ` a ) .+ a ) .x. b ) = ( ( ( ( invg ` R ) ` a ) .x. b ) .+ ( a .x. b ) ) )
193 191 192 42 3eqtr3d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( ( invg ` R ) ` a ) .x. b ) .+ ( a .x. b ) ) = ( 0g ` R ) )
194 193 opeq1d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( ( ( ( invg ` R ) ` a ) .x. b ) .+ ( a .x. b ) ) , ( b .x. b ) >. = <. ( 0g ` R ) , ( b .x. b ) >. )
195 194 eceq1d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( ( ( ( invg ` R ) ` a ) .x. b ) .+ ( a .x. b ) ) , ( b .x. b ) >. ] .~ = [ <. ( 0g ` R ) , ( b .x. b ) >. ] .~ )
196 1 8 24 2 9 10 5 6 7 erler
 |-  ( ph -> .~ Er ( B X. S ) )
197 196 ad4antr
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> .~ Er ( B X. S ) )
198 eqidd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( 0g ` R ) , ( b .x. b ) >. = <. ( 0g ` R ) , ( b .x. b ) >. )
199 eqidd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( 0g ` R ) , ( 1r ` R ) >. = <. ( 0g ` R ) , ( 1r ` R ) >. )
200 95 38 40 40 submcld
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( b .x. b ) e. S )
201 1 2 24 37 54 ringridmd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 0g ` R ) .x. ( 1r ` R ) ) = ( 0g ` R ) )
202 39 200 sseldd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( b .x. b ) e. B )
203 1 2 8 37 202 ringlzd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 0g ` R ) .x. ( b .x. b ) ) = ( 0g ` R ) )
204 201 203 oveq12d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( 0g ` R ) .x. ( 1r ` R ) ) ( -g ` R ) ( ( 0g ` R ) .x. ( b .x. b ) ) ) = ( ( 0g ` R ) ( -g ` R ) ( 0g ` R ) ) )
205 1 8 9 grpsubid
 |-  ( ( R e. Grp /\ ( 0g ` R ) e. B ) -> ( ( 0g ` R ) ( -g ` R ) ( 0g ` R ) ) = ( 0g ` R ) )
206 47 54 205 syl2anc
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 0g ` R ) ( -g ` R ) ( 0g ` R ) ) = ( 0g ` R ) )
207 204 206 eqtrd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( 0g ` R ) .x. ( 1r ` R ) ) ( -g ` R ) ( ( 0g ` R ) .x. ( b .x. b ) ) ) = ( 0g ` R ) )
208 207 oveq2d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( b .x. b ) .x. ( ( ( 0g ` R ) .x. ( 1r ` R ) ) ( -g ` R ) ( ( 0g ` R ) .x. ( b .x. b ) ) ) ) = ( ( b .x. b ) .x. ( 0g ` R ) ) )
209 1 2 8 37 202 ringrzd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( b .x. b ) .x. ( 0g ` R ) ) = ( 0g ` R ) )
210 208 209 eqtrd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( b .x. b ) .x. ( ( ( 0g ` R ) .x. ( 1r ` R ) ) ( -g ` R ) ( ( 0g ` R ) .x. ( b .x. b ) ) ) ) = ( 0g ` R ) )
211 1 5 39 8 2 9 198 199 54 54 200 55 200 210 erlbrd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( 0g ` R ) , ( b .x. b ) >. .~ <. ( 0g ` R ) , ( 1r ` R ) >. )
212 197 211 erthi
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( 0g ` R ) , ( b .x. b ) >. ] .~ = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ )
213 189 195 212 3eqtrd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ )
214 184 188 213 rspcedvd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> E. u e. ( ( B X. S ) /. .~ ) ( u ( +g ` L ) x ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ )
215 214 60 r19.29vva
 |-  ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> E. u e. ( ( B X. S ) /. .~ ) ( u ( +g ` L ) x ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ )
216 15 16 76 179 215 isgrpd2e
 |-  ( ph -> L e. Grp )
217 77 78 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( .r ` L ) y ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) )
218 eqid
 |-  ( .r ` L ) = ( .r ` L )
219 1 2 3 4 5 80 81 82 83 84 85 218 rlocmulval
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) = [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ )
220 1 2 88 82 83 ringcld
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( a .x. c ) e. B )
221 220 96 opelxpd
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> <. ( a .x. c ) , ( b .x. d ) >. e. ( B X. S ) )
222 29 ecelqsi
 |-  ( <. ( a .x. c ) , ( b .x. d ) >. e. ( B X. S ) -> [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ e. ( ( B X. S ) /. .~ ) )
223 221 222 syl
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ e. ( ( B X. S ) /. .~ ) )
224 219 223 eqeltrd
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) e. ( ( B X. S ) /. .~ ) )
225 217 224 eqeltrd
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( .r ` L ) y ) e. ( ( B X. S ) /. .~ ) )
226 225 103 r19.29vva
 |-  ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) y ) e. ( ( B X. S ) /. .~ ) )
227 226 106 r19.29vva
 |-  ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( .r ` L ) y ) e. ( ( B X. S ) /. .~ ) )
228 227 3impa
 |-  ( ( ph /\ x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( .r ` L ) y ) e. ( ( B X. S ) /. .~ ) )
229 1 2 111 112 121 126 ringassd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. c ) .x. e ) = ( a .x. ( c .x. e ) ) )
230 229 145 opeq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( a .x. c ) .x. e ) , ( ( b .x. d ) .x. f ) >. = <. ( a .x. ( c .x. e ) ) , ( b .x. ( d .x. f ) ) >. )
231 230 eceq1d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> [ <. ( ( a .x. c ) .x. e ) , ( ( b .x. d ) .x. f ) >. ] .~ = [ <. ( a .x. ( c .x. e ) ) , ( b .x. ( d .x. f ) ) >. ] .~ )
232 1 2 111 112 121 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( a .x. c ) e. B )
233 1 2 3 4 5 109 113 232 126 149 118 218 rlocmulval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = [ <. ( ( a .x. c ) .x. e ) , ( ( b .x. d ) .x. f ) >. ] .~ )
234 1 2 111 121 126 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( c .x. e ) e. B )
235 1 2 3 4 5 109 113 112 234 122 152 218 rlocmulval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) = [ <. ( a .x. ( c .x. e ) ) , ( b .x. ( d .x. f ) ) >. ] .~ )
236 231 233 235 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) )
237 1 2 3 4 5 109 113 112 121 122 115 218 rlocmulval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) = [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ )
238 237 oveq1d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) = ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) )
239 1 2 3 4 5 109 113 121 126 115 118 218 rlocmulval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ )
240 239 oveq2d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) )
241 236 238 240 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) = ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) )
242 160 161 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( .r ` L ) y ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) )
243 242 163 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( .r ` L ) y ) ( .r ` L ) z ) = ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) )
244 161 163 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( y ( .r ` L ) z ) = ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) )
245 160 244 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( .r ` L ) ( y ( .r ` L ) z ) ) = ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) )
246 241 243 245 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( .r ` L ) y ) ( .r ` L ) z ) = ( x ( .r ` L ) ( y ( .r ` L ) z ) ) )
247 246 170 r19.29vva
 |-  ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( ( x ( .r ` L ) y ) ( .r ` L ) z ) = ( x ( .r ` L ) ( y ( .r ` L ) z ) ) )
248 247 174 r19.29vva
 |-  ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( x ( .r ` L ) y ) ( .r ` L ) z ) = ( x ( .r ` L ) ( y ( .r ` L ) z ) ) )
249 248 177 r19.29vva
 |-  ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> ( ( x ( .r ` L ) y ) ( .r ` L ) z ) = ( x ( .r ` L ) ( y ( .r ` L ) z ) ) )
250 196 ad10antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> .~ Er ( B X. S ) )
251 eqidd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) , ( b .x. ( d .x. f ) ) >. = <. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) , ( b .x. ( d .x. f ) ) >. )
252 1 2 111 112 123 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( a .x. b ) e. B )
253 1 3 2 111 252 141 133 ringdid
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. b ) .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) = ( ( ( a .x. b ) .x. ( c .x. f ) ) .+ ( ( a .x. b ) .x. ( e .x. d ) ) ) )
254 1 2 111 112 123 151 ringassd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. b ) .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) = ( a .x. ( b .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) )
255 253 254 eqtr3d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. b ) .x. ( c .x. f ) ) .+ ( ( a .x. b ) .x. ( e .x. d ) ) ) = ( a .x. ( b .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) )
256 11 crngmgp
 |-  ( R e. CRing -> ( mulGrp ` R ) e. CMnd )
257 6 256 syl
 |-  ( ph -> ( mulGrp ` R ) e. CMnd )
258 257 ad10antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( mulGrp ` R ) e. CMnd )
259 12 95 258 112 121 123 119 cmn4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. c ) .x. ( b .x. f ) ) = ( ( a .x. b ) .x. ( c .x. f ) ) )
260 12 95 258 112 126 123 116 cmn4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. e ) .x. ( b .x. d ) ) = ( ( a .x. b ) .x. ( e .x. d ) ) )
261 259 260 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) = ( ( ( a .x. b ) .x. ( c .x. f ) ) .+ ( ( a .x. b ) .x. ( e .x. d ) ) ) )
262 1 2 109 123 112 151 crng12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) = ( a .x. ( b .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) )
263 255 261 262 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) = ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) )
264 1 2 109 127 123 119 crng12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. ( b .x. f ) ) = ( b .x. ( ( b .x. d ) .x. f ) ) )
265 145 oveq2d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( ( b .x. d ) .x. f ) ) = ( b .x. ( b .x. ( d .x. f ) ) ) )
266 264 265 eqtrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. ( b .x. f ) ) = ( b .x. ( b .x. ( d .x. f ) ) ) )
267 263 266 opeq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. ( b .x. f ) ) >. = <. ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) , ( b .x. ( b .x. ( d .x. f ) ) ) >. )
268 1 2 111 112 151 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) e. B )
269 1 2 111 123 268 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) e. B )
270 95 113 122 152 submcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( d .x. f ) ) e. S )
271 95 113 122 270 submcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( b .x. ( d .x. f ) ) ) e. S )
272 eqidd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) = ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) )
273 eqidd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( b .x. ( d .x. f ) ) ) = ( b .x. ( b .x. ( d .x. f ) ) ) )
274 1 5 109 113 2 251 267 268 269 270 271 122 272 273 erlbr2d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) , ( b .x. ( d .x. f ) ) >. .~ <. ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. ( b .x. f ) ) >. )
275 250 274 erthi
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> [ <. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) , ( b .x. ( d .x. f ) ) >. ] .~ = [ <. ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. ( b .x. f ) ) >. ] .~ )
276 1 2 3 4 5 109 113 112 151 122 152 218 rlocmulval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) = [ <. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) , ( b .x. ( d .x. f ) ) >. ] .~ )
277 1 2 111 112 126 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( a .x. e ) e. B )
278 95 113 122 118 submcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. f ) e. S )
279 1 2 3 4 5 109 113 232 277 149 278 20 rlocaddval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ) = [ <. ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. ( b .x. f ) ) >. ] .~ )
280 275 276 279 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) = ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ) )
281 157 oveq2d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) )
282 1 2 3 4 5 109 113 112 126 122 118 218 rlocmulval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ )
283 237 282 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) = ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ) )
284 280 281 283 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) = ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) )
285 160 165 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( .r ` L ) ( y ( +g ` L ) z ) ) = ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) )
286 160 163 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( .r ` L ) z ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) )
287 242 286 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( .r ` L ) y ) ( +g ` L ) ( x ( .r ` L ) z ) ) = ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) )
288 284 285 287 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( .r ` L ) ( y ( +g ` L ) z ) ) = ( ( x ( .r ` L ) y ) ( +g ` L ) ( x ( .r ` L ) z ) ) )
289 288 170 r19.29vva
 |-  ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( .r ` L ) ( y ( +g ` L ) z ) ) = ( ( x ( .r ` L ) y ) ( +g ` L ) ( x ( .r ` L ) z ) ) )
290 289 174 r19.29vva
 |-  ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) ( y ( +g ` L ) z ) ) = ( ( x ( .r ` L ) y ) ( +g ` L ) ( x ( .r ` L ) z ) ) )
291 290 177 r19.29vva
 |-  ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> ( x ( .r ` L ) ( y ( +g ` L ) z ) ) = ( ( x ( .r ` L ) y ) ( +g ` L ) ( x ( .r ` L ) z ) ) )
292 1 3 2 111 117 124 126 ringdird
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. e ) = ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) )
293 292 opeq1d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. e ) , ( ( b .x. d ) .x. f ) >. = <. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) , ( ( b .x. d ) .x. f ) >. )
294 1 2 111 117 126 119 ringassd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. d ) .x. e ) .x. f ) = ( ( a .x. d ) .x. ( e .x. f ) ) )
295 1 2 111 117 126 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. d ) .x. e ) e. B )
296 1 2 109 119 295 crngcomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( f .x. ( ( a .x. d ) .x. e ) ) = ( ( ( a .x. d ) .x. e ) .x. f ) )
297 12 95 258 112 126 116 119 cmn4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. e ) .x. ( d .x. f ) ) = ( ( a .x. d ) .x. ( e .x. f ) ) )
298 294 296 297 3eqtr4rd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. e ) .x. ( d .x. f ) ) = ( f .x. ( ( a .x. d ) .x. e ) ) )
299 1 2 111 124 126 119 ringassd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( c .x. b ) .x. e ) .x. f ) = ( ( c .x. b ) .x. ( e .x. f ) ) )
300 1 2 111 124 126 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. b ) .x. e ) e. B )
301 1 2 109 119 300 crngcomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( f .x. ( ( c .x. b ) .x. e ) ) = ( ( ( c .x. b ) .x. e ) .x. f ) )
302 12 95 258 121 126 123 119 cmn4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. e ) .x. ( b .x. f ) ) = ( ( c .x. b ) .x. ( e .x. f ) ) )
303 299 301 302 3eqtr4rd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. e ) .x. ( b .x. f ) ) = ( f .x. ( ( c .x. b ) .x. e ) ) )
304 298 303 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) = ( ( f .x. ( ( a .x. d ) .x. e ) ) .+ ( f .x. ( ( c .x. b ) .x. e ) ) ) )
305 1 3 2 111 119 295 300 ringdid
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) = ( ( f .x. ( ( a .x. d ) .x. e ) ) .+ ( f .x. ( ( c .x. b ) .x. e ) ) ) )
306 304 305 eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) = ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) )
307 114 278 sseldd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. f ) e. B )
308 1 2 111 116 307 119 ringassd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( d .x. ( b .x. f ) ) .x. f ) = ( d .x. ( ( b .x. f ) .x. f ) ) )
309 1 2 109 123 116 crngcomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. d ) = ( d .x. b ) )
310 309 oveq1d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. f ) = ( ( d .x. b ) .x. f ) )
311 1 2 111 116 123 119 ringassd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( d .x. b ) .x. f ) = ( d .x. ( b .x. f ) ) )
312 310 311 eqtrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. f ) = ( d .x. ( b .x. f ) ) )
313 312 oveq1d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( b .x. d ) .x. f ) .x. f ) = ( ( d .x. ( b .x. f ) ) .x. f ) )
314 1 2 109 307 116 119 crng12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. f ) .x. ( d .x. f ) ) = ( d .x. ( ( b .x. f ) .x. f ) ) )
315 308 313 314 3eqtr4rd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. f ) .x. ( d .x. f ) ) = ( ( ( b .x. d ) .x. f ) .x. f ) )
316 306 315 opeq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) , ( ( b .x. f ) .x. ( d .x. f ) ) >. = <. ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) , ( ( ( b .x. d ) .x. f ) .x. f ) >. )
317 1 3 110 295 300 grpcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) e. B )
318 1 2 111 119 317 ringcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) e. B )
319 145 270 eqeltrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. f ) e. S )
320 95 113 319 118 submcld
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( b .x. d ) .x. f ) .x. f ) e. S )
321 eqidd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) = ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) )
322 114 319 sseldd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. f ) e. B )
323 1 2 109 322 119 crngcomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( b .x. d ) .x. f ) .x. f ) = ( f .x. ( ( b .x. d ) .x. f ) ) )
324 1 5 109 113 2 293 316 317 318 319 320 118 321 323 erlbr2d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. e ) , ( ( b .x. d ) .x. f ) >. .~ <. ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) , ( ( b .x. f ) .x. ( d .x. f ) ) >. )
325 250 324 erthi
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> [ <. ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. e ) , ( ( b .x. d ) .x. f ) >. ] .~ = [ <. ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) , ( ( b .x. f ) .x. ( d .x. f ) ) >. ] .~ )
326 1 2 3 4 5 109 113 148 126 149 118 218 rlocmulval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = [ <. ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. e ) , ( ( b .x. d ) .x. f ) >. ] .~ )
327 1 2 3 4 5 109 113 277 234 278 152 20 rlocaddval
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ( +g ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) = [ <. ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) , ( ( b .x. f ) .x. ( d .x. f ) ) >. ] .~ )
328 325 326 327 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = ( [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ( +g ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) )
329 155 oveq1d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) = ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) )
330 282 239 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ( +g ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) = ( [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ( +g ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) )
331 328 329 330 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) = ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ( +g ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) )
332 162 163 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( .r ` L ) z ) = ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) )
333 286 244 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( .r ` L ) z ) ( +g ` L ) ( y ( .r ` L ) z ) ) = ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ( +g ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) )
334 331 332 333 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( .r ` L ) z ) = ( ( x ( .r ` L ) z ) ( +g ` L ) ( y ( .r ` L ) z ) ) )
335 334 170 r19.29vva
 |-  ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( .r ` L ) z ) = ( ( x ( .r ` L ) z ) ( +g ` L ) ( y ( .r ` L ) z ) ) )
336 335 174 r19.29vva
 |-  ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( .r ` L ) z ) = ( ( x ( .r ` L ) z ) ( +g ` L ) ( y ( .r ` L ) z ) ) )
337 336 177 r19.29vva
 |-  ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> ( ( x ( +g ` L ) y ) ( .r ` L ) z ) = ( ( x ( .r ` L ) z ) ( +g ` L ) ( y ( .r ` L ) z ) ) )
338 14 27 sseldd
 |-  ( ph -> ( 1r ` R ) e. B )
339 338 27 opelxpd
 |-  ( ph -> <. ( 1r ` R ) , ( 1r ` R ) >. e. ( B X. S ) )
340 29 ecelqsi
 |-  ( <. ( 1r ` R ) , ( 1r ` R ) >. e. ( B X. S ) -> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ e. ( ( B X. S ) /. .~ ) )
341 339 340 syl
 |-  ( ph -> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ e. ( ( B X. S ) /. .~ ) )
342 35 oveq2d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) x ) = ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) )
343 1 2 24 37 43 ringlidmd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 1r ` R ) .x. a ) = a )
344 343 50 opeq12d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( ( 1r ` R ) .x. a ) , ( ( 1r ` R ) .x. b ) >. = <. a , b >. )
345 344 eceq1d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( ( 1r ` R ) .x. a ) , ( ( 1r ` R ) .x. b ) >. ] .~ = [ <. a , b >. ] .~ )
346 39 55 sseldd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( 1r ` R ) e. B )
347 1 2 3 4 5 53 38 346 43 55 40 218 rlocmulval
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) = [ <. ( ( 1r ` R ) .x. a ) , ( ( 1r ` R ) .x. b ) >. ] .~ )
348 345 347 35 3eqtr4d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) = x )
349 342 348 eqtrd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) x ) = x )
350 349 60 r19.29vva
 |-  ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) x ) = x )
351 1 2 3 4 5 53 38 43 346 40 55 218 rlocmulval
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) = [ <. ( a .x. ( 1r ` R ) ) , ( b .x. ( 1r ` R ) ) >. ] .~ )
352 35 oveq1d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) )
353 44 eqcomd
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> a = ( a .x. ( 1r ` R ) ) )
354 353 69 opeq12d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. a , b >. = <. ( a .x. ( 1r ` R ) ) , ( b .x. ( 1r ` R ) ) >. )
355 354 eceq1d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. a , b >. ] .~ = [ <. ( a .x. ( 1r ` R ) ) , ( b .x. ( 1r ` R ) ) >. ] .~ )
356 351 352 355 3eqtr4d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) = [ <. a , b >. ] .~ )
357 356 35 eqtr4d
 |-  ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) = x )
358 357 60 r19.29vva
 |-  ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> ( x ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) = x )
359 1 2 80 82 83 crngcomd
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( a .x. c ) = ( c .x. a ) )
360 1 2 80 92 90 crngcomd
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( b .x. d ) = ( d .x. b ) )
361 359 360 opeq12d
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> <. ( a .x. c ) , ( b .x. d ) >. = <. ( c .x. a ) , ( d .x. b ) >. )
362 361 eceq1d
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ = [ <. ( c .x. a ) , ( d .x. b ) >. ] .~ )
363 1 2 3 4 5 80 81 83 82 85 84 218 rlocmulval
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. c , d >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) = [ <. ( c .x. a ) , ( d .x. b ) >. ] .~ )
364 362 219 363 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) = ( [ <. c , d >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) )
365 78 77 oveq12d
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( y ( .r ` L ) x ) = ( [ <. c , d >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) )
366 364 217 365 3eqtr4d
 |-  ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( .r ` L ) y ) = ( y ( .r ` L ) x ) )
367 366 103 r19.29vva
 |-  ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) y ) = ( y ( .r ` L ) x ) )
368 367 106 r19.29vva
 |-  ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( .r ` L ) y ) = ( y ( .r ` L ) x ) )
369 368 3impa
 |-  ( ( ph /\ x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( .r ` L ) y ) = ( y ( .r ` L ) x ) )
370 15 16 17 216 228 249 291 337 341 350 358 369 iscrngd
 |-  ( ph -> L e. CRing )