Step |
Hyp |
Ref |
Expression |
1 |
|
rlocf1.1 |
|- B = ( Base ` R ) |
2 |
|
rlocf1.2 |
|- .1. = ( 1r ` R ) |
3 |
|
rlocf1.3 |
|- L = ( R RLocal S ) |
4 |
|
rlocf1.4 |
|- .~ = ( R ~RL S ) |
5 |
|
rlocf1.5 |
|- F = ( x e. B |-> [ <. x , .1. >. ] .~ ) |
6 |
|
rlocf1.6 |
|- ( ph -> R e. CRing ) |
7 |
|
rlocf1.7 |
|- ( ph -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
8 |
|
rlocf1.8 |
|- ( ph -> S C_ ( RLReg ` R ) ) |
9 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
10 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
11 |
10 2
|
ringidval |
|- .1. = ( 0g ` ( mulGrp ` R ) ) |
12 |
11
|
subm0cl |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> .1. e. S ) |
13 |
7 12
|
syl |
|- ( ph -> .1. e. S ) |
14 |
13
|
adantr |
|- ( ( ph /\ x e. B ) -> .1. e. S ) |
15 |
9 14
|
opelxpd |
|- ( ( ph /\ x e. B ) -> <. x , .1. >. e. ( B X. S ) ) |
16 |
4
|
ovexi |
|- .~ e. _V |
17 |
16
|
ecelqsi |
|- ( <. x , .1. >. e. ( B X. S ) -> [ <. x , .1. >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
18 |
15 17
|
syl |
|- ( ( ph /\ x e. B ) -> [ <. x , .1. >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
19 |
18
|
ralrimiva |
|- ( ph -> A. x e. B [ <. x , .1. >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
20 |
6
|
crnggrpd |
|- ( ph -> R e. Grp ) |
21 |
20
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> R e. Grp ) |
22 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> x e. B ) |
23 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> y e. B ) |
24 |
|
vex |
|- x e. _V |
25 |
2
|
fvexi |
|- .1. e. _V |
26 |
24 25
|
op1st |
|- ( 1st ` <. x , .1. >. ) = x |
27 |
26
|
a1i |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` <. x , .1. >. ) = x ) |
28 |
|
vex |
|- y e. _V |
29 |
28 25
|
op2nd |
|- ( 2nd ` <. y , .1. >. ) = .1. |
30 |
29
|
a1i |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` <. y , .1. >. ) = .1. ) |
31 |
27 30
|
oveq12d |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) = ( x ( .r ` R ) .1. ) ) |
32 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
33 |
6
|
crngringd |
|- ( ph -> R e. Ring ) |
34 |
33
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> R e. Ring ) |
35 |
1 32 2 34 22
|
ringridmd |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( x ( .r ` R ) .1. ) = x ) |
36 |
31 35
|
eqtrd |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) = x ) |
37 |
28 25
|
op1st |
|- ( 1st ` <. y , .1. >. ) = y |
38 |
37
|
a1i |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` <. y , .1. >. ) = y ) |
39 |
24 25
|
op2nd |
|- ( 2nd ` <. x , .1. >. ) = .1. |
40 |
39
|
a1i |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` <. x , .1. >. ) = .1. ) |
41 |
38 40
|
oveq12d |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) = ( y ( .r ` R ) .1. ) ) |
42 |
1 32 2 34 23
|
ringridmd |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( y ( .r ` R ) .1. ) = y ) |
43 |
41 42
|
eqtrd |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) = y ) |
44 |
36 43
|
oveq12d |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) = ( x ( -g ` R ) y ) ) |
45 |
8
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> S C_ ( RLReg ` R ) ) |
46 |
|
simplr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> t e. S ) |
47 |
45 46
|
sseldd |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> t e. ( RLReg ` R ) ) |
48 |
27 22
|
eqeltrd |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` <. x , .1. >. ) e. B ) |
49 |
10 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
50 |
49
|
submss |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> S C_ B ) |
51 |
7 50
|
syl |
|- ( ph -> S C_ B ) |
52 |
51 13
|
sseldd |
|- ( ph -> .1. e. B ) |
53 |
52
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> .1. e. B ) |
54 |
30 53
|
eqeltrd |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` <. y , .1. >. ) e. B ) |
55 |
1 32 34 48 54
|
ringcld |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) e. B ) |
56 |
38 23
|
eqeltrd |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` <. y , .1. >. ) e. B ) |
57 |
40 53
|
eqeltrd |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` <. x , .1. >. ) e. B ) |
58 |
1 32 34 56 57
|
ringcld |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) e. B ) |
59 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
60 |
1 59
|
grpsubcl |
|- ( ( R e. Grp /\ ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) e. B /\ ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) e. B ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) e. B ) |
61 |
21 55 58 60
|
syl3anc |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) e. B ) |
62 |
|
simpr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) |
63 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
64 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
65 |
63 1 32 64
|
rrgeq0i |
|- ( ( t e. ( RLReg ` R ) /\ ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) e. B ) -> ( ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) = ( 0g ` R ) ) ) |
66 |
65
|
imp |
|- ( ( ( t e. ( RLReg ` R ) /\ ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) e. B ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) = ( 0g ` R ) ) |
67 |
47 61 62 66
|
syl21anc |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) = ( 0g ` R ) ) |
68 |
44 67
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( x ( -g ` R ) y ) = ( 0g ` R ) ) |
69 |
1 64 59
|
grpsubeq0 |
|- ( ( R e. Grp /\ x e. B /\ y e. B ) -> ( ( x ( -g ` R ) y ) = ( 0g ` R ) <-> x = y ) ) |
70 |
69
|
biimpa |
|- ( ( ( R e. Grp /\ x e. B /\ y e. B ) /\ ( x ( -g ` R ) y ) = ( 0g ` R ) ) -> x = y ) |
71 |
21 22 23 68 70
|
syl31anc |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> x = y ) |
72 |
51
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) -> S C_ B ) |
73 |
|
eqid |
|- ( B X. S ) = ( B X. S ) |
74 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. B ) /\ y e. B ) -> R e. CRing ) |
75 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. B ) /\ y e. B ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
76 |
1 64 2 32 59 73 4 74 75
|
erler |
|- ( ( ( ph /\ x e. B ) /\ y e. B ) -> .~ Er ( B X. S ) ) |
77 |
15
|
adantr |
|- ( ( ( ph /\ x e. B ) /\ y e. B ) -> <. x , .1. >. e. ( B X. S ) ) |
78 |
76 77
|
erth |
|- ( ( ( ph /\ x e. B ) /\ y e. B ) -> ( <. x , .1. >. .~ <. y , .1. >. <-> [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) ) |
79 |
78
|
biimpar |
|- ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) -> <. x , .1. >. .~ <. y , .1. >. ) |
80 |
1 4 72 64 32 59 79
|
erldi |
|- ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) -> E. t e. S ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) |
81 |
71 80
|
r19.29a |
|- ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) -> x = y ) |
82 |
81
|
ex |
|- ( ( ( ph /\ x e. B ) /\ y e. B ) -> ( [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ -> x = y ) ) |
83 |
82
|
anasss |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ -> x = y ) ) |
84 |
83
|
ralrimivva |
|- ( ph -> A. x e. B A. y e. B ( [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ -> x = y ) ) |
85 |
|
opeq1 |
|- ( x = y -> <. x , .1. >. = <. y , .1. >. ) |
86 |
85
|
eceq1d |
|- ( x = y -> [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) |
87 |
5 86
|
f1mpt |
|- ( F : B -1-1-> ( ( B X. S ) /. .~ ) <-> ( A. x e. B [ <. x , .1. >. ] .~ e. ( ( B X. S ) /. .~ ) /\ A. x e. B A. y e. B ( [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ -> x = y ) ) ) |
88 |
19 84 87
|
sylanbrc |
|- ( ph -> F : B -1-1-> ( ( B X. S ) /. .~ ) ) |
89 |
|
eqid |
|- ( 1r ` L ) = ( 1r ` L ) |
90 |
|
eqid |
|- ( .r ` L ) = ( .r ` L ) |
91 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
92 |
1 32 91 3 4 6 7
|
rloccring |
|- ( ph -> L e. CRing ) |
93 |
92
|
crngringd |
|- ( ph -> L e. Ring ) |
94 |
|
opeq1 |
|- ( x = .1. -> <. x , .1. >. = <. .1. , .1. >. ) |
95 |
94
|
eceq1d |
|- ( x = .1. -> [ <. x , .1. >. ] .~ = [ <. .1. , .1. >. ] .~ ) |
96 |
|
eqid |
|- [ <. .1. , .1. >. ] .~ = [ <. .1. , .1. >. ] .~ |
97 |
64 2 3 4 6 7 96
|
rloc1r |
|- ( ph -> [ <. .1. , .1. >. ] .~ = ( 1r ` L ) ) |
98 |
95 97
|
sylan9eqr |
|- ( ( ph /\ x = .1. ) -> [ <. x , .1. >. ] .~ = ( 1r ` L ) ) |
99 |
|
fvexd |
|- ( ph -> ( 1r ` L ) e. _V ) |
100 |
5 98 52 99
|
fvmptd2 |
|- ( ph -> ( F ` .1. ) = ( 1r ` L ) ) |
101 |
33
|
ad2antrr |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> R e. Ring ) |
102 |
52
|
ad2antrr |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> .1. e. B ) |
103 |
1 32 2 101 102
|
ringlidmd |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( .1. ( .r ` R ) .1. ) = .1. ) |
104 |
103
|
eqcomd |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> .1. = ( .1. ( .r ` R ) .1. ) ) |
105 |
104
|
opeq2d |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> <. ( a ( .r ` R ) b ) , .1. >. = <. ( a ( .r ` R ) b ) , ( .1. ( .r ` R ) .1. ) >. ) |
106 |
105
|
eceq1d |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ = [ <. ( a ( .r ` R ) b ) , ( .1. ( .r ` R ) .1. ) >. ] .~ ) |
107 |
6
|
ad2antrr |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> R e. CRing ) |
108 |
7
|
ad2antrr |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
109 |
|
simplr |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> a e. B ) |
110 |
|
simpr |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> b e. B ) |
111 |
108 12
|
syl |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> .1. e. S ) |
112 |
1 32 91 3 4 107 108 109 110 111 111 90
|
rlocmulval |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( [ <. a , .1. >. ] .~ ( .r ` L ) [ <. b , .1. >. ] .~ ) = [ <. ( a ( .r ` R ) b ) , ( .1. ( .r ` R ) .1. ) >. ] .~ ) |
113 |
106 112
|
eqtr4d |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ = ( [ <. a , .1. >. ] .~ ( .r ` L ) [ <. b , .1. >. ] .~ ) ) |
114 |
|
opeq1 |
|- ( x = ( a ( .r ` R ) b ) -> <. x , .1. >. = <. ( a ( .r ` R ) b ) , .1. >. ) |
115 |
114
|
eceq1d |
|- ( x = ( a ( .r ` R ) b ) -> [ <. x , .1. >. ] .~ = [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ ) |
116 |
1 32 101 109 110
|
ringcld |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( a ( .r ` R ) b ) e. B ) |
117 |
|
ecexg |
|- ( .~ e. _V -> [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ e. _V ) |
118 |
16 117
|
mp1i |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ e. _V ) |
119 |
5 115 116 118
|
fvmptd3 |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` ( a ( .r ` R ) b ) ) = [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ ) |
120 |
|
opeq1 |
|- ( x = a -> <. x , .1. >. = <. a , .1. >. ) |
121 |
120
|
eceq1d |
|- ( x = a -> [ <. x , .1. >. ] .~ = [ <. a , .1. >. ] .~ ) |
122 |
|
ecexg |
|- ( .~ e. _V -> [ <. a , .1. >. ] .~ e. _V ) |
123 |
16 122
|
mp1i |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. a , .1. >. ] .~ e. _V ) |
124 |
5 121 109 123
|
fvmptd3 |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` a ) = [ <. a , .1. >. ] .~ ) |
125 |
|
opeq1 |
|- ( x = b -> <. x , .1. >. = <. b , .1. >. ) |
126 |
125
|
eceq1d |
|- ( x = b -> [ <. x , .1. >. ] .~ = [ <. b , .1. >. ] .~ ) |
127 |
|
ecexg |
|- ( .~ e. _V -> [ <. b , .1. >. ] .~ e. _V ) |
128 |
16 127
|
mp1i |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. b , .1. >. ] .~ e. _V ) |
129 |
5 126 110 128
|
fvmptd3 |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` b ) = [ <. b , .1. >. ] .~ ) |
130 |
124 129
|
oveq12d |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( ( F ` a ) ( .r ` L ) ( F ` b ) ) = ( [ <. a , .1. >. ] .~ ( .r ` L ) [ <. b , .1. >. ] .~ ) ) |
131 |
113 119 130
|
3eqtr4d |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` ( a ( .r ` R ) b ) ) = ( ( F ` a ) ( .r ` L ) ( F ` b ) ) ) |
132 |
131
|
anasss |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( .r ` R ) b ) ) = ( ( F ` a ) ( .r ` L ) ( F ` b ) ) ) |
133 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
134 |
|
eqid |
|- ( +g ` L ) = ( +g ` L ) |
135 |
18 5
|
fmptd |
|- ( ph -> F : B --> ( ( B X. S ) /. .~ ) ) |
136 |
1 64 32 59 73 3 4 6 51
|
rlocbas |
|- ( ph -> ( ( B X. S ) /. .~ ) = ( Base ` L ) ) |
137 |
136
|
feq3d |
|- ( ph -> ( F : B --> ( ( B X. S ) /. .~ ) <-> F : B --> ( Base ` L ) ) ) |
138 |
135 137
|
mpbid |
|- ( ph -> F : B --> ( Base ` L ) ) |
139 |
1 32 2 101 109
|
ringridmd |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( a ( .r ` R ) .1. ) = a ) |
140 |
1 32 2 101 110
|
ringridmd |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( b ( .r ` R ) .1. ) = b ) |
141 |
139 140
|
oveq12d |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( ( a ( .r ` R ) .1. ) ( +g ` R ) ( b ( .r ` R ) .1. ) ) = ( a ( +g ` R ) b ) ) |
142 |
141
|
eqcomd |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( a ( +g ` R ) b ) = ( ( a ( .r ` R ) .1. ) ( +g ` R ) ( b ( .r ` R ) .1. ) ) ) |
143 |
142 104
|
opeq12d |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> <. ( a ( +g ` R ) b ) , .1. >. = <. ( ( a ( .r ` R ) .1. ) ( +g ` R ) ( b ( .r ` R ) .1. ) ) , ( .1. ( .r ` R ) .1. ) >. ) |
144 |
143
|
eceq1d |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ = [ <. ( ( a ( .r ` R ) .1. ) ( +g ` R ) ( b ( .r ` R ) .1. ) ) , ( .1. ( .r ` R ) .1. ) >. ] .~ ) |
145 |
1 32 91 3 4 107 108 109 110 111 111 134
|
rlocaddval |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( [ <. a , .1. >. ] .~ ( +g ` L ) [ <. b , .1. >. ] .~ ) = [ <. ( ( a ( .r ` R ) .1. ) ( +g ` R ) ( b ( .r ` R ) .1. ) ) , ( .1. ( .r ` R ) .1. ) >. ] .~ ) |
146 |
144 145
|
eqtr4d |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ = ( [ <. a , .1. >. ] .~ ( +g ` L ) [ <. b , .1. >. ] .~ ) ) |
147 |
|
opeq1 |
|- ( x = ( a ( +g ` R ) b ) -> <. x , .1. >. = <. ( a ( +g ` R ) b ) , .1. >. ) |
148 |
147
|
eceq1d |
|- ( x = ( a ( +g ` R ) b ) -> [ <. x , .1. >. ] .~ = [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ ) |
149 |
20
|
ad2antrr |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> R e. Grp ) |
150 |
1 91 149 109 110
|
grpcld |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) |
151 |
|
ecexg |
|- ( .~ e. _V -> [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ e. _V ) |
152 |
16 151
|
mp1i |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ e. _V ) |
153 |
5 148 150 152
|
fvmptd3 |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` ( a ( +g ` R ) b ) ) = [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ ) |
154 |
124 129
|
oveq12d |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( ( F ` a ) ( +g ` L ) ( F ` b ) ) = ( [ <. a , .1. >. ] .~ ( +g ` L ) [ <. b , .1. >. ] .~ ) ) |
155 |
146 153 154
|
3eqtr4d |
|- ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` L ) ( F ` b ) ) ) |
156 |
155
|
anasss |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` L ) ( F ` b ) ) ) |
157 |
1 2 89 32 90 33 93 100 132 133 91 134 138 156
|
isrhmd |
|- ( ph -> F e. ( R RingHom L ) ) |
158 |
88 157
|
jca |
|- ( ph -> ( F : B -1-1-> ( ( B X. S ) /. .~ ) /\ F e. ( R RingHom L ) ) ) |