Step |
Hyp |
Ref |
Expression |
1 |
|
rlocaddval.1 |
|- B = ( Base ` R ) |
2 |
|
rlocaddval.2 |
|- .x. = ( .r ` R ) |
3 |
|
rlocaddval.3 |
|- .+ = ( +g ` R ) |
4 |
|
rlocaddval.4 |
|- L = ( R RLocal S ) |
5 |
|
rlocaddval.5 |
|- .~ = ( R ~RL S ) |
6 |
|
rlocaddval.r |
|- ( ph -> R e. CRing ) |
7 |
|
rlocaddval.s |
|- ( ph -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
8 |
|
rlocaddval.6 |
|- ( ph -> E e. B ) |
9 |
|
rlocaddval.7 |
|- ( ph -> F e. B ) |
10 |
|
rlocaddval.8 |
|- ( ph -> G e. S ) |
11 |
|
rlocaddval.9 |
|- ( ph -> H e. S ) |
12 |
|
rlocmulval.1 |
|- .(x) = ( .r ` L ) |
13 |
8 10
|
opelxpd |
|- ( ph -> <. E , G >. e. ( B X. S ) ) |
14 |
9 11
|
opelxpd |
|- ( ph -> <. F , H >. e. ( B X. S ) ) |
15 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
16 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
17 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
18 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
19 |
|
eqid |
|- ( Base ` ( Scalar ` R ) ) = ( Base ` ( Scalar ` R ) ) |
20 |
|
eqid |
|- ( .s ` R ) = ( .s ` R ) |
21 |
|
eqid |
|- ( B X. S ) = ( B X. S ) |
22 |
|
eqid |
|- ( TopSet ` R ) = ( TopSet ` R ) |
23 |
|
eqid |
|- ( dist ` R ) = ( dist ` R ) |
24 |
|
eqid |
|- ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) |
25 |
|
eqid |
|- ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) |
26 |
|
eqid |
|- ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) = ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) |
27 |
|
eqid |
|- { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } |
28 |
|
eqid |
|- ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) |
29 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
30 |
29 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
31 |
30
|
submss |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> S C_ B ) |
32 |
7 31
|
syl |
|- ( ph -> S C_ B ) |
33 |
1 15 2 16 3 17 18 19 20 21 5 22 23 24 25 26 27 28 6 32
|
rlocval |
|- ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) |
34 |
4 33
|
eqtrid |
|- ( ph -> L = ( ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) |
35 |
|
eqidd |
|- ( ph -> ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) |
36 |
|
eqid |
|- ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
37 |
36
|
imasvalstr |
|- ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) Struct <. 1 , ; 1 2 >. |
38 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
39 |
|
snsstp1 |
|- { <. ( Base ` ndx ) , ( B X. S ) >. } C_ { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } |
40 |
|
ssun1 |
|- { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } C_ ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) |
41 |
|
ssun1 |
|- ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) C_ ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
42 |
40 41
|
sstri |
|- { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } C_ ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
43 |
39 42
|
sstri |
|- { <. ( Base ` ndx ) , ( B X. S ) >. } C_ ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
44 |
1
|
fvexi |
|- B e. _V |
45 |
44
|
a1i |
|- ( ph -> B e. _V ) |
46 |
45 7
|
xpexd |
|- ( ph -> ( B X. S ) e. _V ) |
47 |
|
eqid |
|- ( Base ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = ( Base ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) |
48 |
35 37 38 43 46 47
|
strfv3 |
|- ( ph -> ( Base ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = ( B X. S ) ) |
49 |
48
|
eqcomd |
|- ( ph -> ( B X. S ) = ( Base ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) ) |
50 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
51 |
1 15 50 2 16 21 5 6 7
|
erler |
|- ( ph -> .~ Er ( B X. S ) ) |
52 |
|
tpex |
|- { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } e. _V |
53 |
|
tpex |
|- { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } e. _V |
54 |
52 53
|
unex |
|- ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) e. _V |
55 |
|
tpex |
|- { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } e. _V |
56 |
54 55
|
unex |
|- ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) e. _V |
57 |
56
|
a1i |
|- ( ph -> ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) e. _V ) |
58 |
32
|
ad2antrr |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> S C_ B ) |
59 |
58
|
ad2antrr |
|- ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) -> S C_ B ) |
60 |
59
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> S C_ B ) |
61 |
|
eqidd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. = <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. ) |
62 |
|
eqidd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. = <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
63 |
6
|
crngringd |
|- ( ph -> R e. Ring ) |
64 |
63
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> R e. Ring ) |
65 |
|
simplr |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> u .~ p ) |
66 |
1 5 58 65
|
erlcl1 |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> u e. ( B X. S ) ) |
67 |
66
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> u e. ( B X. S ) ) |
68 |
|
xp1st |
|- ( u e. ( B X. S ) -> ( 1st ` u ) e. B ) |
69 |
67 68
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` u ) e. B ) |
70 |
|
simpr |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> v .~ q ) |
71 |
1 5 58 70
|
erlcl1 |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> v e. ( B X. S ) ) |
72 |
71
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> v e. ( B X. S ) ) |
73 |
|
xp1st |
|- ( v e. ( B X. S ) -> ( 1st ` v ) e. B ) |
74 |
72 73
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` v ) e. B ) |
75 |
1 2 64 69 74
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` u ) .x. ( 1st ` v ) ) e. B ) |
76 |
1 5 58 65
|
erlcl2 |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> p e. ( B X. S ) ) |
77 |
76
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> p e. ( B X. S ) ) |
78 |
|
xp1st |
|- ( p e. ( B X. S ) -> ( 1st ` p ) e. B ) |
79 |
77 78
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` p ) e. B ) |
80 |
1 5 58 70
|
erlcl2 |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> q e. ( B X. S ) ) |
81 |
80
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> q e. ( B X. S ) ) |
82 |
|
xp1st |
|- ( q e. ( B X. S ) -> ( 1st ` q ) e. B ) |
83 |
81 82
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` q ) e. B ) |
84 |
1 2 64 79 83
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` p ) .x. ( 1st ` q ) ) e. B ) |
85 |
7
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
86 |
|
xp2nd |
|- ( u e. ( B X. S ) -> ( 2nd ` u ) e. S ) |
87 |
67 86
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` u ) e. S ) |
88 |
|
xp2nd |
|- ( v e. ( B X. S ) -> ( 2nd ` v ) e. S ) |
89 |
72 88
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` v ) e. S ) |
90 |
29 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
91 |
90
|
submcl |
|- ( ( S e. ( SubMnd ` ( mulGrp ` R ) ) /\ ( 2nd ` u ) e. S /\ ( 2nd ` v ) e. S ) -> ( ( 2nd ` u ) .x. ( 2nd ` v ) ) e. S ) |
92 |
85 87 89 91
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` u ) .x. ( 2nd ` v ) ) e. S ) |
93 |
|
xp2nd |
|- ( p e. ( B X. S ) -> ( 2nd ` p ) e. S ) |
94 |
77 93
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` p ) e. S ) |
95 |
|
xp2nd |
|- ( q e. ( B X. S ) -> ( 2nd ` q ) e. S ) |
96 |
81 95
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` q ) e. S ) |
97 |
90
|
submcl |
|- ( ( S e. ( SubMnd ` ( mulGrp ` R ) ) /\ ( 2nd ` p ) e. S /\ ( 2nd ` q ) e. S ) -> ( ( 2nd ` p ) .x. ( 2nd ` q ) ) e. S ) |
98 |
85 94 96 97
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` p ) .x. ( 2nd ` q ) ) e. S ) |
99 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> f e. S ) |
100 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> g e. S ) |
101 |
90
|
submcl |
|- ( ( S e. ( SubMnd ` ( mulGrp ` R ) ) /\ f e. S /\ g e. S ) -> ( f .x. g ) e. S ) |
102 |
85 99 100 101
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. g ) e. S ) |
103 |
60 102
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. g ) e. B ) |
104 |
60 98
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` p ) .x. ( 2nd ` q ) ) e. B ) |
105 |
1 2 64 75 104
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) e. B ) |
106 |
60 92
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` u ) .x. ( 2nd ` v ) ) e. B ) |
107 |
1 2 64 84 106
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) e. B ) |
108 |
1 2 16 64 103 105 107
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) |
109 |
64
|
ringgrpd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> R e. Grp ) |
110 |
1 2 64 103 105
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) e. B ) |
111 |
1 2 64 79 74
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` p ) .x. ( 1st ` v ) ) e. B ) |
112 |
60 87
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` u ) e. B ) |
113 |
60 96
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` q ) e. B ) |
114 |
1 2 64 112 113
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 2nd ` u ) .x. ( 2nd ` q ) ) e. B ) |
115 |
1 2 64 111 114
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) e. B ) |
116 |
1 2 64 103 115
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) e. B ) |
117 |
1 2 64 103 107
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) e. B ) |
118 |
1 3 16
|
grpnpncan |
|- ( ( R e. Grp /\ ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) e. B /\ ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) e. B /\ ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) e. B ) ) -> ( ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ) .+ ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) = ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) |
119 |
109 110 116 117 118
|
syl13anc |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ) .+ ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) = ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) |
120 |
6
|
ad2antrr |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> R e. CRing ) |
121 |
120
|
ad2antrr |
|- ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) -> R e. CRing ) |
122 |
121
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> R e. CRing ) |
123 |
29
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
124 |
122 123
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( mulGrp ` R ) e. CMnd ) |
125 |
60 99
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> f e. B ) |
126 |
60 100
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> g e. B ) |
127 |
60 94
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` p ) e. B ) |
128 |
30 90 124 125 126 69 74 127 113
|
cmn246135 |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) = ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ) ) |
129 |
30 90 124 125 126 79 74 112 113
|
cmn246135 |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) = ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) |
130 |
128 129
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ) = ( ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ) ( -g ` R ) ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) ) |
131 |
1 2 64 74 113
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` v ) .x. ( 2nd ` q ) ) e. B ) |
132 |
1 2 64 126 131
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) e. B ) |
133 |
1 2 64 69 127
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` u ) .x. ( 2nd ` p ) ) e. B ) |
134 |
1 2 64 125 133
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) e. B ) |
135 |
1 2 64 79 112
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` p ) .x. ( 2nd ` u ) ) e. B ) |
136 |
1 2 64 125 135
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) e. B ) |
137 |
1 2 16 64 132 134 136
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ( -g ` R ) ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) = ( ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ) ( -g ` R ) ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) ) |
138 |
1 2 16 64 125 133 135
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ( -g ` R ) ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) |
139 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) |
140 |
138 139
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ( -g ` R ) ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) |
141 |
140
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ( -g ` R ) ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) = ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( 0g ` R ) ) ) |
142 |
1 2 15 64 132
|
ringrzd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
143 |
141 142
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ( -g ` R ) ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) = ( 0g ` R ) ) |
144 |
137 143
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` u ) .x. ( 2nd ` p ) ) ) ) ( -g ` R ) ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) .x. ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) ) = ( 0g ` R ) ) |
145 |
130 144
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ) = ( 0g ` R ) ) |
146 |
1 2 122 79 74
|
crngcomd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` p ) .x. ( 1st ` v ) ) = ( ( 1st ` v ) .x. ( 1st ` p ) ) ) |
147 |
146
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) = ( ( ( 1st ` v ) .x. ( 1st ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) |
148 |
147
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) = ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 1st ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ) |
149 |
30 90 124 125 126 74 79 112 113
|
cmn145236 |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` v ) .x. ( 1st ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) = ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ) ) |
150 |
148 149
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) = ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ) ) |
151 |
1 2 122 83 79
|
crngcomd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` q ) .x. ( 1st ` p ) ) = ( ( 1st ` p ) .x. ( 1st ` q ) ) ) |
152 |
151
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` q ) .x. ( 1st ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) = ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) |
153 |
152
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 1st ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) = ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) |
154 |
60 89
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` v ) e. B ) |
155 |
30 90 124 125 126 83 79 112 154
|
cmn145236 |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` q ) .x. ( 1st ` p ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) = ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) |
156 |
153 155
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) = ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) |
157 |
150 156
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) ) |
158 |
1 2 64 83 154
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` q ) .x. ( 2nd ` v ) ) e. B ) |
159 |
1 2 16 64 126 131 158
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) |
160 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) |
161 |
159 160
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) |
162 |
161
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) = ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( 0g ` R ) ) ) |
163 |
1 2 64 126 158
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) e. B ) |
164 |
1 2 16 64 136 132 163
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) = ( ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) ) |
165 |
1 2 15 64 136
|
ringrzd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
166 |
162 164 165
|
3eqtr3d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` v ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) .x. ( g .x. ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) ) = ( 0g ` R ) ) |
167 |
157 166
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( 0g ` R ) ) |
168 |
145 167
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ) .+ ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) = ( ( 0g ` R ) .+ ( 0g ` R ) ) ) |
169 |
1 15
|
grpidcl |
|- ( R e. Grp -> ( 0g ` R ) e. B ) |
170 |
109 169
|
syl |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( 0g ` R ) e. B ) |
171 |
1 3 15 109 170
|
grplidd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( 0g ` R ) .+ ( 0g ` R ) ) = ( 0g ` R ) ) |
172 |
168 171
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( ( ( f .x. g ) .x. ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ) .+ ( ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` q ) ) ) ) ( -g ` R ) ( ( f .x. g ) .x. ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) ) = ( 0g ` R ) ) |
173 |
108 119 172
|
3eqtr2d |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> ( ( f .x. g ) .x. ( ( ( ( 1st ` u ) .x. ( 1st ` v ) ) .x. ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) ( -g ` R ) ( ( ( 1st ` p ) .x. ( 1st ` q ) ) .x. ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) ) ) = ( 0g ` R ) ) |
174 |
1 5 60 15 2 16 61 62 75 84 92 98 102 173
|
erlbrd |
|- ( ( ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) /\ g e. S ) /\ ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) -> <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. .~ <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
175 |
70
|
ad2antrr |
|- ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) -> v .~ q ) |
176 |
1 5 59 15 2 16 175
|
erldi |
|- ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) -> E. g e. S ( g .x. ( ( ( 1st ` v ) .x. ( 2nd ` q ) ) ( -g ` R ) ( ( 1st ` q ) .x. ( 2nd ` v ) ) ) ) = ( 0g ` R ) ) |
177 |
174 176
|
r19.29a |
|- ( ( ( ( ( ph /\ u .~ p ) /\ v .~ q ) /\ f e. S ) /\ ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) -> <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. .~ <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
178 |
1 5 58 15 2 16 65
|
erldi |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> E. f e. S ( f .x. ( ( ( 1st ` u ) .x. ( 2nd ` p ) ) ( -g ` R ) ( ( 1st ` p ) .x. ( 2nd ` u ) ) ) ) = ( 0g ` R ) ) |
179 |
177 178
|
r19.29a |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. .~ <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
180 |
|
mulridx |
|- .r = Slot ( .r ` ndx ) |
181 |
|
snsstp3 |
|- { <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } C_ { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } |
182 |
181 42
|
sstri |
|- { <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } C_ ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
183 |
25
|
mpoexg |
|- ( ( ( B X. S ) e. _V /\ ( B X. S ) e. _V ) -> ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) e. _V ) |
184 |
46 46 183
|
syl2anc |
|- ( ph -> ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) e. _V ) |
185 |
|
eqid |
|- ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) |
186 |
35 37 180 182 184 185
|
strfv3 |
|- ( ph -> ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) ) |
187 |
186
|
ad2antrr |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) ) |
188 |
187
|
oveqd |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( u ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) = ( u ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) v ) ) |
189 |
|
opex |
|- <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. e. _V |
190 |
189
|
a1i |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. e. _V ) |
191 |
|
simpl |
|- ( ( a = u /\ b = v ) -> a = u ) |
192 |
191
|
fveq2d |
|- ( ( a = u /\ b = v ) -> ( 1st ` a ) = ( 1st ` u ) ) |
193 |
|
simpr |
|- ( ( a = u /\ b = v ) -> b = v ) |
194 |
193
|
fveq2d |
|- ( ( a = u /\ b = v ) -> ( 1st ` b ) = ( 1st ` v ) ) |
195 |
192 194
|
oveq12d |
|- ( ( a = u /\ b = v ) -> ( ( 1st ` a ) .x. ( 1st ` b ) ) = ( ( 1st ` u ) .x. ( 1st ` v ) ) ) |
196 |
191
|
fveq2d |
|- ( ( a = u /\ b = v ) -> ( 2nd ` a ) = ( 2nd ` u ) ) |
197 |
193
|
fveq2d |
|- ( ( a = u /\ b = v ) -> ( 2nd ` b ) = ( 2nd ` v ) ) |
198 |
196 197
|
oveq12d |
|- ( ( a = u /\ b = v ) -> ( ( 2nd ` a ) .x. ( 2nd ` b ) ) = ( ( 2nd ` u ) .x. ( 2nd ` v ) ) ) |
199 |
195 198
|
opeq12d |
|- ( ( a = u /\ b = v ) -> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. = <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. ) |
200 |
199 25
|
ovmpoga |
|- ( ( u e. ( B X. S ) /\ v e. ( B X. S ) /\ <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. e. _V ) -> ( u ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) v ) = <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. ) |
201 |
66 71 190 200
|
syl3anc |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( u ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) v ) = <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. ) |
202 |
188 201
|
eqtrd |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( u ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) = <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. ) |
203 |
187
|
oveqd |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( p ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) = ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) ) |
204 |
|
opex |
|- <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. e. _V |
205 |
204
|
a1i |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. e. _V ) |
206 |
|
simpl |
|- ( ( a = p /\ b = q ) -> a = p ) |
207 |
206
|
fveq2d |
|- ( ( a = p /\ b = q ) -> ( 1st ` a ) = ( 1st ` p ) ) |
208 |
|
simpr |
|- ( ( a = p /\ b = q ) -> b = q ) |
209 |
208
|
fveq2d |
|- ( ( a = p /\ b = q ) -> ( 1st ` b ) = ( 1st ` q ) ) |
210 |
207 209
|
oveq12d |
|- ( ( a = p /\ b = q ) -> ( ( 1st ` a ) .x. ( 1st ` b ) ) = ( ( 1st ` p ) .x. ( 1st ` q ) ) ) |
211 |
206
|
fveq2d |
|- ( ( a = p /\ b = q ) -> ( 2nd ` a ) = ( 2nd ` p ) ) |
212 |
208
|
fveq2d |
|- ( ( a = p /\ b = q ) -> ( 2nd ` b ) = ( 2nd ` q ) ) |
213 |
211 212
|
oveq12d |
|- ( ( a = p /\ b = q ) -> ( ( 2nd ` a ) .x. ( 2nd ` b ) ) = ( ( 2nd ` p ) .x. ( 2nd ` q ) ) ) |
214 |
210 213
|
opeq12d |
|- ( ( a = p /\ b = q ) -> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. = <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
215 |
214 25
|
ovmpoga |
|- ( ( p e. ( B X. S ) /\ q e. ( B X. S ) /\ <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. e. _V ) -> ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) = <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
216 |
76 80 205 215
|
syl3anc |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) = <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
217 |
203 216
|
eqtrd |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( p ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) = <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
218 |
202 217
|
breq12d |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( ( u ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) .~ ( p ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) <-> <. ( ( 1st ` u ) .x. ( 1st ` v ) ) , ( ( 2nd ` u ) .x. ( 2nd ` v ) ) >. .~ <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) ) |
219 |
179 218
|
mpbird |
|- ( ( ( ph /\ u .~ p ) /\ v .~ q ) -> ( u ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) .~ ( p ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) ) |
220 |
219
|
anasss |
|- ( ( ph /\ ( u .~ p /\ v .~ q ) ) -> ( u ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) .~ ( p ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) ) |
221 |
220
|
ex |
|- ( ph -> ( ( u .~ p /\ v .~ q ) -> ( u ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) v ) .~ ( p ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) ) ) |
222 |
186
|
oveqd |
|- ( ph -> ( p ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) = ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) ) |
223 |
222
|
ad2antrr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( p ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) = ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) ) |
224 |
|
simplr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> p e. ( B X. S ) ) |
225 |
|
simpr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> q e. ( B X. S ) ) |
226 |
204
|
a1i |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. e. _V ) |
227 |
224 225 226 215
|
syl3anc |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) = <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. ) |
228 |
63
|
ad2antrr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> R e. Ring ) |
229 |
224 78
|
syl |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( 1st ` p ) e. B ) |
230 |
225 82
|
syl |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( 1st ` q ) e. B ) |
231 |
1 2 228 229 230
|
ringcld |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( ( 1st ` p ) .x. ( 1st ` q ) ) e. B ) |
232 |
7
|
ad2antrr |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
233 |
224 93
|
syl |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( 2nd ` p ) e. S ) |
234 |
225 95
|
syl |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( 2nd ` q ) e. S ) |
235 |
232 233 234 97
|
syl3anc |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( ( 2nd ` p ) .x. ( 2nd ` q ) ) e. S ) |
236 |
231 235
|
opelxpd |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> <. ( ( 1st ` p ) .x. ( 1st ` q ) ) , ( ( 2nd ` p ) .x. ( 2nd ` q ) ) >. e. ( B X. S ) ) |
237 |
227 236
|
eqeltrd |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( p ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) q ) e. ( B X. S ) ) |
238 |
223 237
|
eqeltrd |
|- ( ( ( ph /\ p e. ( B X. S ) ) /\ q e. ( B X. S ) ) -> ( p ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) e. ( B X. S ) ) |
239 |
238
|
anasss |
|- ( ( ph /\ ( p e. ( B X. S ) /\ q e. ( B X. S ) ) ) -> ( p ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) q ) e. ( B X. S ) ) |
240 |
34 49 51 57 221 239 185 12
|
qusmulval |
|- ( ( ph /\ <. E , G >. e. ( B X. S ) /\ <. F , H >. e. ( B X. S ) ) -> ( [ <. E , G >. ] .~ .(x) [ <. F , H >. ] .~ ) = [ ( <. E , G >. ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) <. F , H >. ) ] .~ ) |
241 |
13 14 240
|
mpd3an23 |
|- ( ph -> ( [ <. E , G >. ] .~ .(x) [ <. F , H >. ] .~ ) = [ ( <. E , G >. ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) <. F , H >. ) ] .~ ) |
242 |
186
|
oveqd |
|- ( ph -> ( <. E , G >. ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) <. F , H >. ) = ( <. E , G >. ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) <. F , H >. ) ) |
243 |
25
|
a1i |
|- ( ph -> ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) = ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) ) |
244 |
|
simprl |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> a = <. E , G >. ) |
245 |
244
|
fveq2d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` a ) = ( 1st ` <. E , G >. ) ) |
246 |
8
|
adantr |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> E e. B ) |
247 |
10
|
adantr |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> G e. S ) |
248 |
|
op1stg |
|- ( ( E e. B /\ G e. S ) -> ( 1st ` <. E , G >. ) = E ) |
249 |
246 247 248
|
syl2anc |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` <. E , G >. ) = E ) |
250 |
245 249
|
eqtrd |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` a ) = E ) |
251 |
|
simprr |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> b = <. F , H >. ) |
252 |
251
|
fveq2d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` b ) = ( 1st ` <. F , H >. ) ) |
253 |
9
|
adantr |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> F e. B ) |
254 |
11
|
adantr |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> H e. S ) |
255 |
|
op1stg |
|- ( ( F e. B /\ H e. S ) -> ( 1st ` <. F , H >. ) = F ) |
256 |
253 254 255
|
syl2anc |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` <. F , H >. ) = F ) |
257 |
252 256
|
eqtrd |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 1st ` b ) = F ) |
258 |
250 257
|
oveq12d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( ( 1st ` a ) .x. ( 1st ` b ) ) = ( E .x. F ) ) |
259 |
244
|
fveq2d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` a ) = ( 2nd ` <. E , G >. ) ) |
260 |
|
op2ndg |
|- ( ( E e. B /\ G e. S ) -> ( 2nd ` <. E , G >. ) = G ) |
261 |
246 247 260
|
syl2anc |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` <. E , G >. ) = G ) |
262 |
259 261
|
eqtrd |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` a ) = G ) |
263 |
251
|
fveq2d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` b ) = ( 2nd ` <. F , H >. ) ) |
264 |
|
op2ndg |
|- ( ( F e. B /\ H e. S ) -> ( 2nd ` <. F , H >. ) = H ) |
265 |
253 254 264
|
syl2anc |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` <. F , H >. ) = H ) |
266 |
263 265
|
eqtrd |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( 2nd ` b ) = H ) |
267 |
262 266
|
oveq12d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> ( ( 2nd ` a ) .x. ( 2nd ` b ) ) = ( G .x. H ) ) |
268 |
258 267
|
opeq12d |
|- ( ( ph /\ ( a = <. E , G >. /\ b = <. F , H >. ) ) -> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. = <. ( E .x. F ) , ( G .x. H ) >. ) |
269 |
|
opex |
|- <. ( E .x. F ) , ( G .x. H ) >. e. _V |
270 |
269
|
a1i |
|- ( ph -> <. ( E .x. F ) , ( G .x. H ) >. e. _V ) |
271 |
243 268 13 14 270
|
ovmpod |
|- ( ph -> ( <. E , G >. ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) <. F , H >. ) = <. ( E .x. F ) , ( G .x. H ) >. ) |
272 |
242 271
|
eqtrd |
|- ( ph -> ( <. E , G >. ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) <. F , H >. ) = <. ( E .x. F ) , ( G .x. H ) >. ) |
273 |
272
|
eceq1d |
|- ( ph -> [ ( <. E , G >. ( .r ` ( ( { <. ( Base ` ndx ) , ( B X. S ) >. , <. ( +g ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. ( B X. S ) |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. ( B X. S ) , b e. ( B X. S ) |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) <. F , H >. ) ] .~ = [ <. ( E .x. F ) , ( G .x. H ) >. ] .~ ) |
274 |
241 273
|
eqtrd |
|- ( ph -> ( [ <. E , G >. ] .~ .(x) [ <. F , H >. ] .~ ) = [ <. ( E .x. F ) , ( G .x. H ) >. ] .~ ) |