Step |
Hyp |
Ref |
Expression |
1 |
|
rlocval.1 |
|- B = ( Base ` R ) |
2 |
|
rlocval.2 |
|- .0. = ( 0g ` R ) |
3 |
|
rlocval.3 |
|- .x. = ( .r ` R ) |
4 |
|
rlocval.4 |
|- .- = ( -g ` R ) |
5 |
|
rlocval.5 |
|- .+ = ( +g ` R ) |
6 |
|
rlocval.6 |
|- .<_ = ( le ` R ) |
7 |
|
rlocval.7 |
|- F = ( Scalar ` R ) |
8 |
|
rlocval.8 |
|- K = ( Base ` F ) |
9 |
|
rlocval.9 |
|- C = ( .s ` R ) |
10 |
|
rlocval.10 |
|- W = ( B X. S ) |
11 |
|
rlocval.11 |
|- .~ = ( R ~RL S ) |
12 |
|
rlocval.12 |
|- J = ( TopSet ` R ) |
13 |
|
rlocval.13 |
|- D = ( dist ` R ) |
14 |
|
rlocval.14 |
|- .(+) = ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) |
15 |
|
rlocval.15 |
|- .(x) = ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) |
16 |
|
rlocval.16 |
|- .X. = ( k e. K , a e. W |-> <. ( k C ( 1st ` a ) ) , ( 2nd ` a ) >. ) |
17 |
|
rlocval.17 |
|- .c_ = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) .<_ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } |
18 |
|
rlocval.18 |
|- E = ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) D ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) |
19 |
|
rlocval.19 |
|- ( ph -> R e. V ) |
20 |
|
rlocval.20 |
|- ( ph -> S C_ B ) |
21 |
19
|
elexd |
|- ( ph -> R e. _V ) |
22 |
1
|
fvexi |
|- B e. _V |
23 |
22
|
a1i |
|- ( ph -> B e. _V ) |
24 |
23 20
|
ssexd |
|- ( ph -> S e. _V ) |
25 |
|
ovexd |
|- ( ph -> ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) |
26 |
|
fvexd |
|- ( ( r = R /\ s = S ) -> ( .r ` r ) e. _V ) |
27 |
|
fveq2 |
|- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
28 |
27
|
adantr |
|- ( ( r = R /\ s = S ) -> ( .r ` r ) = ( .r ` R ) ) |
29 |
28 3
|
eqtr4di |
|- ( ( r = R /\ s = S ) -> ( .r ` r ) = .x. ) |
30 |
|
fvexd |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( Base ` r ) e. _V ) |
31 |
|
vex |
|- s e. _V |
32 |
31
|
a1i |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> s e. _V ) |
33 |
30 32
|
xpexd |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( ( Base ` r ) X. s ) e. _V ) |
34 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
35 |
34
|
ad2antrr |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( Base ` r ) = ( Base ` R ) ) |
36 |
35 1
|
eqtr4di |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( Base ` r ) = B ) |
37 |
|
simplr |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> s = S ) |
38 |
36 37
|
xpeq12d |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( ( Base ` r ) X. s ) = ( B X. S ) ) |
39 |
38 10
|
eqtr4di |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( ( Base ` r ) X. s ) = W ) |
40 |
|
simpr |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> w = W ) |
41 |
40
|
opeq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( Base ` ndx ) , w >. = <. ( Base ` ndx ) , W >. ) |
42 |
|
simplll |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> r = R ) |
43 |
42
|
fveq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( +g ` r ) = ( +g ` R ) ) |
44 |
43 5
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( +g ` r ) = .+ ) |
45 |
|
simplr |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> x = .x. ) |
46 |
45
|
oveqd |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( 1st ` a ) x ( 2nd ` b ) ) = ( ( 1st ` a ) .x. ( 2nd ` b ) ) ) |
47 |
45
|
oveqd |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( 1st ` b ) x ( 2nd ` a ) ) = ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) |
48 |
44 46 47
|
oveq123d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) = ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) |
49 |
45
|
oveqd |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( 2nd ` a ) x ( 2nd ` b ) ) = ( ( 2nd ` a ) .x. ( 2nd ` b ) ) ) |
50 |
48 49
|
opeq12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. = <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) |
51 |
40 40 50
|
mpoeq123dv |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) = ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .+ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) ) |
52 |
51 14
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) = .(+) ) |
53 |
52
|
opeq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. = <. ( +g ` ndx ) , .(+) >. ) |
54 |
45
|
oveqd |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( 1st ` a ) x ( 1st ` b ) ) = ( ( 1st ` a ) .x. ( 1st ` b ) ) ) |
55 |
54 49
|
opeq12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. = <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) |
56 |
40 40 55
|
mpoeq123dv |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) = ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) ) |
57 |
56 15
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) = .(x) ) |
58 |
57
|
opeq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. = <. ( .r ` ndx ) , .(x) >. ) |
59 |
41 53 58
|
tpeq123d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } = { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } ) |
60 |
42
|
fveq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( Scalar ` r ) = ( Scalar ` R ) ) |
61 |
60 7
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( Scalar ` r ) = F ) |
62 |
61
|
opeq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( Scalar ` ndx ) , ( Scalar ` r ) >. = <. ( Scalar ` ndx ) , F >. ) |
63 |
60
|
fveq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( Base ` ( Scalar ` r ) ) = ( Base ` ( Scalar ` R ) ) ) |
64 |
7
|
fveq2i |
|- ( Base ` F ) = ( Base ` ( Scalar ` R ) ) |
65 |
8 64
|
eqtri |
|- K = ( Base ` ( Scalar ` R ) ) |
66 |
63 65
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( Base ` ( Scalar ` r ) ) = K ) |
67 |
42
|
fveq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( .s ` r ) = ( .s ` R ) ) |
68 |
67 9
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( .s ` r ) = C ) |
69 |
68
|
oveqd |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( k ( .s ` r ) ( 1st ` a ) ) = ( k C ( 1st ` a ) ) ) |
70 |
69
|
opeq1d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. = <. ( k C ( 1st ` a ) ) , ( 2nd ` a ) >. ) |
71 |
66 40 70
|
mpoeq123dv |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) = ( k e. K , a e. W |-> <. ( k C ( 1st ` a ) ) , ( 2nd ` a ) >. ) ) |
72 |
71 16
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) = .X. ) |
73 |
72
|
opeq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. = <. ( .s ` ndx ) , .X. >. ) |
74 |
|
eqidd |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( .i ` ndx ) , (/) >. = <. ( .i ` ndx ) , (/) >. ) |
75 |
62 73 74
|
tpeq123d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } = { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) |
76 |
59 75
|
uneq12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) = ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) ) |
77 |
42
|
fveq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( TopSet ` r ) = ( TopSet ` R ) ) |
78 |
77 12
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( TopSet ` r ) = J ) |
79 |
37
|
adantr |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> s = S ) |
80 |
78 79
|
oveq12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( TopSet ` r ) |`t s ) = ( J |`t S ) ) |
81 |
78 80
|
oveq12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) = ( J tX ( J |`t S ) ) ) |
82 |
81
|
opeq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. = <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. ) |
83 |
40
|
eleq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( a e. w <-> a e. W ) ) |
84 |
40
|
eleq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( b e. w <-> b e. W ) ) |
85 |
83 84
|
anbi12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( a e. w /\ b e. w ) <-> ( a e. W /\ b e. W ) ) ) |
86 |
42
|
fveq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( le ` r ) = ( le ` R ) ) |
87 |
86 6
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( le ` r ) = .<_ ) |
88 |
46 87 47
|
breq123d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) <-> ( ( 1st ` a ) .x. ( 2nd ` b ) ) .<_ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) |
89 |
85 88
|
anbi12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) <-> ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) .<_ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) ) |
90 |
89
|
opabbidv |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) .<_ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } ) |
91 |
90 17
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } = .c_ ) |
92 |
91
|
opeq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. = <. ( le ` ndx ) , .c_ >. ) |
93 |
42
|
fveq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( dist ` r ) = ( dist ` R ) ) |
94 |
93 13
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( dist ` r ) = D ) |
95 |
94 46 47
|
oveq123d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) = ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) D ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) |
96 |
40 40 95
|
mpoeq123dv |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) D ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) ) |
97 |
96 18
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = E ) |
98 |
97
|
opeq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. = <. ( dist ` ndx ) , E >. ) |
99 |
82 92 98
|
tpeq123d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } = { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) |
100 |
76 99
|
uneq12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) ) |
101 |
42 79
|
oveq12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( r ~RL s ) = ( R ~RL S ) ) |
102 |
101 11
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( r ~RL s ) = .~ ) |
103 |
100 102
|
oveq12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) |
104 |
33 39 103
|
csbied2 |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) |
105 |
26 29 104
|
csbied2 |
|- ( ( r = R /\ s = S ) -> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) |
106 |
|
df-rloc |
|- RLocal = ( r e. _V , s e. _V |-> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) ) |
107 |
105 106
|
ovmpoga |
|- ( ( R e. _V /\ S e. _V /\ ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) |
108 |
21 24 25 107
|
syl3anc |
|- ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) |