Metamath Proof Explorer


Theorem rmo2i

Description: Condition implying restricted "at most one". (Contributed by NM, 17-Jun-2017)

Ref Expression
Hypothesis rmo2.1
|- F/ y ph
Assertion rmo2i
|- ( E. y e. A A. x e. A ( ph -> x = y ) -> E* x e. A ph )

Proof

Step Hyp Ref Expression
1 rmo2.1
 |-  F/ y ph
2 rexex
 |-  ( E. y e. A A. x e. A ( ph -> x = y ) -> E. y A. x e. A ( ph -> x = y ) )
3 1 rmo2
 |-  ( E* x e. A ph <-> E. y A. x e. A ( ph -> x = y ) )
4 2 3 sylibr
 |-  ( E. y e. A A. x e. A ( ph -> x = y ) -> E* x e. A ph )