Step |
Hyp |
Ref |
Expression |
1 |
|
rmo4f.1 |
|- F/_ x A |
2 |
|
rmo4f.2 |
|- F/_ y A |
3 |
|
rmo4f.3 |
|- F/ x ps |
4 |
|
rmo4f.4 |
|- ( x = y -> ( ph <-> ps ) ) |
5 |
|
nfv |
|- F/ y ph |
6 |
1 2 5
|
rmo3f |
|- ( E* x e. A ph <-> A. x e. A A. y e. A ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
7 |
3 4
|
sbiev |
|- ( [ y / x ] ph <-> ps ) |
8 |
7
|
anbi2i |
|- ( ( ph /\ [ y / x ] ph ) <-> ( ph /\ ps ) ) |
9 |
8
|
imbi1i |
|- ( ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> ( ( ph /\ ps ) -> x = y ) ) |
10 |
9
|
2ralbii |
|- ( A. x e. A A. y e. A ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> A. x e. A A. y e. A ( ( ph /\ ps ) -> x = y ) ) |
11 |
6 10
|
bitri |
|- ( E* x e. A ph <-> A. x e. A A. y e. A ( ( ph /\ ps ) -> x = y ) ) |