| Step | Hyp | Ref | Expression | 
						
							| 1 |  | moan |  |-  ( E* x ( x e. A /\ ph ) -> E* x ( ps /\ ( x e. A /\ ph ) ) ) | 
						
							| 2 |  | an12 |  |-  ( ( ps /\ ( x e. A /\ ph ) ) <-> ( x e. A /\ ( ps /\ ph ) ) ) | 
						
							| 3 | 2 | mobii |  |-  ( E* x ( ps /\ ( x e. A /\ ph ) ) <-> E* x ( x e. A /\ ( ps /\ ph ) ) ) | 
						
							| 4 | 1 3 | sylib |  |-  ( E* x ( x e. A /\ ph ) -> E* x ( x e. A /\ ( ps /\ ph ) ) ) | 
						
							| 5 |  | df-rmo |  |-  ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) | 
						
							| 6 |  | df-rmo |  |-  ( E* x e. A ( ps /\ ph ) <-> E* x ( x e. A /\ ( ps /\ ph ) ) ) | 
						
							| 7 | 4 5 6 | 3imtr4i |  |-  ( E* x e. A ph -> E* x e. A ( ps /\ ph ) ) |