Metamath Proof Explorer


Theorem rmoan

Description: Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017)

Ref Expression
Assertion rmoan
|- ( E* x e. A ph -> E* x e. A ( ps /\ ph ) )

Proof

Step Hyp Ref Expression
1 moan
 |-  ( E* x ( x e. A /\ ph ) -> E* x ( ps /\ ( x e. A /\ ph ) ) )
2 an12
 |-  ( ( ps /\ ( x e. A /\ ph ) ) <-> ( x e. A /\ ( ps /\ ph ) ) )
3 2 mobii
 |-  ( E* x ( ps /\ ( x e. A /\ ph ) ) <-> E* x ( x e. A /\ ( ps /\ ph ) ) )
4 1 3 sylib
 |-  ( E* x ( x e. A /\ ph ) -> E* x ( x e. A /\ ( ps /\ ph ) ) )
5 df-rmo
 |-  ( E* x e. A ph <-> E* x ( x e. A /\ ph ) )
6 df-rmo
 |-  ( E* x e. A ( ps /\ ph ) <-> E* x ( x e. A /\ ( ps /\ ph ) ) )
7 4 5 6 3imtr4i
 |-  ( E* x e. A ph -> E* x e. A ( ps /\ ph ) )