Step |
Hyp |
Ref |
Expression |
1 |
|
moan |
|- ( E* x ( x e. A /\ ph ) -> E* x ( ps /\ ( x e. A /\ ph ) ) ) |
2 |
|
an12 |
|- ( ( ps /\ ( x e. A /\ ph ) ) <-> ( x e. A /\ ( ps /\ ph ) ) ) |
3 |
2
|
mobii |
|- ( E* x ( ps /\ ( x e. A /\ ph ) ) <-> E* x ( x e. A /\ ( ps /\ ph ) ) ) |
4 |
1 3
|
sylib |
|- ( E* x ( x e. A /\ ph ) -> E* x ( x e. A /\ ( ps /\ ph ) ) ) |
5 |
|
df-rmo |
|- ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) |
6 |
|
df-rmo |
|- ( E* x e. A ( ps /\ ph ) <-> E* x ( x e. A /\ ( ps /\ ph ) ) ) |
7 |
4 5 6
|
3imtr4i |
|- ( E* x e. A ph -> E* x e. A ( ps /\ ph ) ) |