Metamath Proof Explorer


Theorem rmoanid

Description: Cancellation law for restricted at-most-one quantification. (Contributed by Peter Mazsa, 24-May-2018) (Proof shortened by Wolf Lammen, 12-Jan-2025)

Ref Expression
Assertion rmoanid
|- ( E* x e. A ( x e. A /\ ph ) <-> E* x e. A ph )

Proof

Step Hyp Ref Expression
1 ibar
 |-  ( x e. A -> ( ph <-> ( x e. A /\ ph ) ) )
2 1 bicomd
 |-  ( x e. A -> ( ( x e. A /\ ph ) <-> ph ) )
3 2 rmobiia
 |-  ( E* x e. A ( x e. A /\ ph ) <-> E* x e. A ph )