| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmoi.b |  |-  ( x = B -> ( ph <-> ps ) ) | 
						
							| 2 |  | rmoi.c |  |-  ( x = C -> ( ph <-> ch ) ) | 
						
							| 3 |  | df-rmo |  |-  ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) | 
						
							| 4 |  | simprl |  |-  ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> B e. A ) | 
						
							| 5 |  | eleq1 |  |-  ( B = C -> ( B e. A <-> C e. A ) ) | 
						
							| 6 | 4 5 | syl5ibcom |  |-  ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( B = C -> C e. A ) ) | 
						
							| 7 |  | simpl |  |-  ( ( C e. A /\ ch ) -> C e. A ) | 
						
							| 8 | 7 | a1i |  |-  ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( ( C e. A /\ ch ) -> C e. A ) ) | 
						
							| 9 | 4 | anim1i |  |-  ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> ( B e. A /\ C e. A ) ) | 
						
							| 10 |  | simpll |  |-  ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> E* x ( x e. A /\ ph ) ) | 
						
							| 11 |  | simplr |  |-  ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> ( B e. A /\ ps ) ) | 
						
							| 12 |  | eleq1 |  |-  ( x = B -> ( x e. A <-> B e. A ) ) | 
						
							| 13 | 12 1 | anbi12d |  |-  ( x = B -> ( ( x e. A /\ ph ) <-> ( B e. A /\ ps ) ) ) | 
						
							| 14 |  | eleq1 |  |-  ( x = C -> ( x e. A <-> C e. A ) ) | 
						
							| 15 | 14 2 | anbi12d |  |-  ( x = C -> ( ( x e. A /\ ph ) <-> ( C e. A /\ ch ) ) ) | 
						
							| 16 | 13 15 | mob |  |-  ( ( ( B e. A /\ C e. A ) /\ E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( B = C <-> ( C e. A /\ ch ) ) ) | 
						
							| 17 | 9 10 11 16 | syl3anc |  |-  ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> ( B = C <-> ( C e. A /\ ch ) ) ) | 
						
							| 18 | 17 | ex |  |-  ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( C e. A -> ( B = C <-> ( C e. A /\ ch ) ) ) ) | 
						
							| 19 | 6 8 18 | pm5.21ndd |  |-  ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( B = C <-> ( C e. A /\ ch ) ) ) | 
						
							| 20 | 3 19 | sylanb |  |-  ( ( E* x e. A ph /\ ( B e. A /\ ps ) ) -> ( B = C <-> ( C e. A /\ ch ) ) ) |