Step |
Hyp |
Ref |
Expression |
1 |
|
rmoi2.1 |
|- ( x = B -> ( ps <-> ch ) ) |
2 |
|
rmoi2.2 |
|- ( ph -> B e. A ) |
3 |
|
rmoi2.3 |
|- ( ph -> E* x e. A ps ) |
4 |
|
rmoi2.4 |
|- ( ph -> x e. A ) |
5 |
|
rmoi2.5 |
|- ( ph -> ps ) |
6 |
|
df-rmo |
|- ( E* x e. A ps <-> E* x ( x e. A /\ ps ) ) |
7 |
3 6
|
sylib |
|- ( ph -> E* x ( x e. A /\ ps ) ) |
8 |
|
eleq1 |
|- ( x = B -> ( x e. A <-> B e. A ) ) |
9 |
8 1
|
anbi12d |
|- ( x = B -> ( ( x e. A /\ ps ) <-> ( B e. A /\ ch ) ) ) |
10 |
9
|
mob2 |
|- ( ( B e. A /\ E* x ( x e. A /\ ps ) /\ ( x e. A /\ ps ) ) -> ( x = B <-> ( B e. A /\ ch ) ) ) |
11 |
2 7 4 5 10
|
syl112anc |
|- ( ph -> ( x = B <-> ( B e. A /\ ch ) ) ) |
12 |
2 11
|
mpbirand |
|- ( ph -> ( x = B <-> ch ) ) |