Metamath Proof Explorer


Theorem rmob2

Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019)

Ref Expression
Hypotheses rmoi2.1
|- ( x = B -> ( ps <-> ch ) )
rmoi2.2
|- ( ph -> B e. A )
rmoi2.3
|- ( ph -> E* x e. A ps )
rmoi2.4
|- ( ph -> x e. A )
rmoi2.5
|- ( ph -> ps )
Assertion rmob2
|- ( ph -> ( x = B <-> ch ) )

Proof

Step Hyp Ref Expression
1 rmoi2.1
 |-  ( x = B -> ( ps <-> ch ) )
2 rmoi2.2
 |-  ( ph -> B e. A )
3 rmoi2.3
 |-  ( ph -> E* x e. A ps )
4 rmoi2.4
 |-  ( ph -> x e. A )
5 rmoi2.5
 |-  ( ph -> ps )
6 df-rmo
 |-  ( E* x e. A ps <-> E* x ( x e. A /\ ps ) )
7 3 6 sylib
 |-  ( ph -> E* x ( x e. A /\ ps ) )
8 eleq1
 |-  ( x = B -> ( x e. A <-> B e. A ) )
9 8 1 anbi12d
 |-  ( x = B -> ( ( x e. A /\ ps ) <-> ( B e. A /\ ch ) ) )
10 9 mob2
 |-  ( ( B e. A /\ E* x ( x e. A /\ ps ) /\ ( x e. A /\ ps ) ) -> ( x = B <-> ( B e. A /\ ch ) ) )
11 2 7 4 5 10 syl112anc
 |-  ( ph -> ( x = B <-> ( B e. A /\ ch ) ) )
12 2 11 mpbirand
 |-  ( ph -> ( x = B <-> ch ) )