Metamath Proof Explorer


Theorem rmobidv

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmobidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion rmobidv
|- ( ph -> ( E* x e. A ps <-> E* x e. A ch ) )

Proof

Step Hyp Ref Expression
1 rmobidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 adantr
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 rmobidva
 |-  ( ph -> ( E* x e. A ps <-> E* x e. A ch ) )