Metamath Proof Explorer


Theorem rmobidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmobidva.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rmobidva
|- ( ph -> ( E* x e. A ps <-> E* x e. A ch ) )

Proof

Step Hyp Ref Expression
1 rmobidva.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
2 nfv
 |-  F/ x ph
3 2 1 rmobida
 |-  ( ph -> ( E* x e. A ps <-> E* x e. A ch ) )