Metamath Proof Explorer


Theorem rmobii

Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmobii.1
|- ( ph <-> ps )
Assertion rmobii
|- ( E* x e. A ph <-> E* x e. A ps )

Proof

Step Hyp Ref Expression
1 rmobii.1
 |-  ( ph <-> ps )
2 1 a1i
 |-  ( x e. A -> ( ph <-> ps ) )
3 2 rmobiia
 |-  ( E* x e. A ph <-> E* x e. A ps )