Metamath Proof Explorer


Theorem rmobiia

Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmobiia.1
|- ( x e. A -> ( ph <-> ps ) )
Assertion rmobiia
|- ( E* x e. A ph <-> E* x e. A ps )

Proof

Step Hyp Ref Expression
1 rmobiia.1
 |-  ( x e. A -> ( ph <-> ps ) )
2 1 pm5.32i
 |-  ( ( x e. A /\ ph ) <-> ( x e. A /\ ps ) )
3 2 mobii
 |-  ( E* x ( x e. A /\ ph ) <-> E* x ( x e. A /\ ps ) )
4 df-rmo
 |-  ( E* x e. A ph <-> E* x ( x e. A /\ ph ) )
5 df-rmo
 |-  ( E* x e. A ps <-> E* x ( x e. A /\ ps ) )
6 3 4 5 3bitr4i
 |-  ( E* x e. A ph <-> E* x e. A ps )