Metamath Proof Explorer


Theorem rmoi

Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012) (Revised by NM, 16-Jun-2017)

Ref Expression
Hypotheses rmoi.b
|- ( x = B -> ( ph <-> ps ) )
rmoi.c
|- ( x = C -> ( ph <-> ch ) )
Assertion rmoi
|- ( ( E* x e. A ph /\ ( B e. A /\ ps ) /\ ( C e. A /\ ch ) ) -> B = C )

Proof

Step Hyp Ref Expression
1 rmoi.b
 |-  ( x = B -> ( ph <-> ps ) )
2 rmoi.c
 |-  ( x = C -> ( ph <-> ch ) )
3 1 2 rmob
 |-  ( ( E* x e. A ph /\ ( B e. A /\ ps ) ) -> ( B = C <-> ( C e. A /\ ch ) ) )
4 3 biimp3ar
 |-  ( ( E* x e. A ph /\ ( B e. A /\ ps ) /\ ( C e. A /\ ch ) ) -> B = C )