Metamath Proof Explorer


Theorem rmoi2

Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019)

Ref Expression
Hypotheses rmoi2.1
|- ( x = B -> ( ps <-> ch ) )
rmoi2.2
|- ( ph -> B e. A )
rmoi2.3
|- ( ph -> E* x e. A ps )
rmoi2.4
|- ( ph -> x e. A )
rmoi2.5
|- ( ph -> ps )
rmoi2.6
|- ( ph -> ch )
Assertion rmoi2
|- ( ph -> x = B )

Proof

Step Hyp Ref Expression
1 rmoi2.1
 |-  ( x = B -> ( ps <-> ch ) )
2 rmoi2.2
 |-  ( ph -> B e. A )
3 rmoi2.3
 |-  ( ph -> E* x e. A ps )
4 rmoi2.4
 |-  ( ph -> x e. A )
5 rmoi2.5
 |-  ( ph -> ps )
6 rmoi2.6
 |-  ( ph -> ch )
7 1 2 3 4 5 rmob2
 |-  ( ph -> ( x = B <-> ch ) )
8 6 7 mpbird
 |-  ( ph -> x = B )