Metamath Proof Explorer


Theorem rmoimi

Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Hypothesis rmoimi.1
|- ( ph -> ps )
Assertion rmoimi
|- ( E* x e. A ps -> E* x e. A ph )

Proof

Step Hyp Ref Expression
1 rmoimi.1
 |-  ( ph -> ps )
2 1 a1i
 |-  ( x e. A -> ( ph -> ps ) )
3 2 rmoimia
 |-  ( E* x e. A ps -> E* x e. A ph )