Metamath Proof Explorer


Theorem rmoimi2

Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Hypothesis rmoimi2.1
|- A. x ( ( x e. A /\ ph ) -> ( x e. B /\ ps ) )
Assertion rmoimi2
|- ( E* x e. B ps -> E* x e. A ph )

Proof

Step Hyp Ref Expression
1 rmoimi2.1
 |-  A. x ( ( x e. A /\ ph ) -> ( x e. B /\ ps ) )
2 moim
 |-  ( A. x ( ( x e. A /\ ph ) -> ( x e. B /\ ps ) ) -> ( E* x ( x e. B /\ ps ) -> E* x ( x e. A /\ ph ) ) )
3 1 2 ax-mp
 |-  ( E* x ( x e. B /\ ps ) -> E* x ( x e. A /\ ph ) )
4 df-rmo
 |-  ( E* x e. B ps <-> E* x ( x e. B /\ ps ) )
5 df-rmo
 |-  ( E* x e. A ph <-> E* x ( x e. A /\ ph ) )
6 3 4 5 3imtr4i
 |-  ( E* x e. B ps -> E* x e. A ph )