Metamath Proof Explorer


Theorem rmoimia

Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Hypothesis rmoimia.1
|- ( x e. A -> ( ph -> ps ) )
Assertion rmoimia
|- ( E* x e. A ps -> E* x e. A ph )

Proof

Step Hyp Ref Expression
1 rmoimia.1
 |-  ( x e. A -> ( ph -> ps ) )
2 rmoim
 |-  ( A. x e. A ( ph -> ps ) -> ( E* x e. A ps -> E* x e. A ph ) )
3 2 1 mprg
 |-  ( E* x e. A ps -> E* x e. A ph )