Step |
Hyp |
Ref |
Expression |
1 |
|
idd |
|- ( A e. _V -> ( [. A / x ]. ph -> [. A / x ]. ph ) ) |
2 |
|
nfsbc1v |
|- F/ x [. A / x ]. ph |
3 |
|
sbceq1a |
|- ( x = A -> ( ph <-> [. A / x ]. ph ) ) |
4 |
2 3
|
rexsngf |
|- ( A e. _V -> ( E. x e. { A } ph <-> [. A / x ]. ph ) ) |
5 |
2 3
|
reusngf |
|- ( A e. _V -> ( E! x e. { A } ph <-> [. A / x ]. ph ) ) |
6 |
1 4 5
|
3imtr4d |
|- ( A e. _V -> ( E. x e. { A } ph -> E! x e. { A } ph ) ) |
7 |
|
rmo5 |
|- ( E* x e. { A } ph <-> ( E. x e. { A } ph -> E! x e. { A } ph ) ) |
8 |
6 7
|
sylibr |
|- ( A e. _V -> E* x e. { A } ph ) |
9 |
|
rmo0 |
|- E* x e. (/) ph |
10 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
11 |
|
rmoeq1 |
|- ( { A } = (/) -> ( E* x e. { A } ph <-> E* x e. (/) ph ) ) |
12 |
10 11
|
sylbi |
|- ( -. A e. _V -> ( E* x e. { A } ph <-> E* x e. (/) ph ) ) |
13 |
9 12
|
mpbiri |
|- ( -. A e. _V -> E* x e. { A } ph ) |
14 |
8 13
|
pm2.61i |
|- E* x e. { A } ph |