Step |
Hyp |
Ref |
Expression |
1 |
|
rmspecnonsq |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) |
2 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
3 |
|
zsqcl |
|- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
4 |
2 3
|
syl |
|- ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. ZZ ) |
5 |
4
|
zred |
|- ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. RR ) |
6 |
|
1red |
|- ( A e. ( ZZ>= ` 2 ) -> 1 e. RR ) |
7 |
5 6
|
resubcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR ) |
8 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
9 |
8
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 ^ 2 ) = 1 ) |
10 |
|
eluz2b2 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ 1 < A ) ) |
11 |
10
|
simprbi |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < A ) |
12 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
13 |
|
0le1 |
|- 0 <_ 1 |
14 |
13
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> 0 <_ 1 ) |
15 |
|
eluzge2nn0 |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN0 ) |
16 |
15
|
nn0ge0d |
|- ( A e. ( ZZ>= ` 2 ) -> 0 <_ A ) |
17 |
6 12 14 16
|
lt2sqd |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 < A <-> ( 1 ^ 2 ) < ( A ^ 2 ) ) ) |
18 |
11 17
|
mpbid |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 ^ 2 ) < ( A ^ 2 ) ) |
19 |
9 18
|
eqbrtrrd |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < ( A ^ 2 ) ) |
20 |
6 5
|
posdifd |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 < ( A ^ 2 ) <-> 0 < ( ( A ^ 2 ) - 1 ) ) ) |
21 |
19 20
|
mpbid |
|- ( A e. ( ZZ>= ` 2 ) -> 0 < ( ( A ^ 2 ) - 1 ) ) |
22 |
7 21
|
elrpd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR+ ) |
23 |
22
|
rpsqrtcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. RR+ ) |
24 |
23
|
rpred |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. RR ) |
25 |
24
|
recnd |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. CC ) |
26 |
25
|
mulid1d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) = ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) |
27 |
26
|
oveq2d |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) = ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) |
28 |
|
pell1qrss14 |
|- ( ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) -> ( Pell1QR ` ( ( A ^ 2 ) - 1 ) ) C_ ( Pell14QR ` ( ( A ^ 2 ) - 1 ) ) ) |
29 |
1 28
|
syl |
|- ( A e. ( ZZ>= ` 2 ) -> ( Pell1QR ` ( ( A ^ 2 ) - 1 ) ) C_ ( Pell14QR ` ( ( A ^ 2 ) - 1 ) ) ) |
30 |
|
1nn0 |
|- 1 e. NN0 |
31 |
30
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> 1 e. NN0 ) |
32 |
8
|
oveq2i |
|- ( ( ( A ^ 2 ) - 1 ) x. ( 1 ^ 2 ) ) = ( ( ( A ^ 2 ) - 1 ) x. 1 ) |
33 |
7
|
recnd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
34 |
33
|
mulid1d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( ( A ^ 2 ) - 1 ) x. 1 ) = ( ( A ^ 2 ) - 1 ) ) |
35 |
32 34
|
eqtrid |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( ( A ^ 2 ) - 1 ) x. ( 1 ^ 2 ) ) = ( ( A ^ 2 ) - 1 ) ) |
36 |
35
|
oveq2d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( 1 ^ 2 ) ) ) = ( ( A ^ 2 ) - ( ( A ^ 2 ) - 1 ) ) ) |
37 |
5
|
recnd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. CC ) |
38 |
|
1cnd |
|- ( A e. ( ZZ>= ` 2 ) -> 1 e. CC ) |
39 |
37 38
|
nncand |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - ( ( A ^ 2 ) - 1 ) ) = 1 ) |
40 |
36 39
|
eqtrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( 1 ^ 2 ) ) ) = 1 ) |
41 |
|
pellqrexplicit |
|- ( ( ( ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) /\ A e. NN0 /\ 1 e. NN0 ) /\ ( ( A ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( 1 ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) e. ( Pell1QR ` ( ( A ^ 2 ) - 1 ) ) ) |
42 |
1 15 31 40 41
|
syl31anc |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) e. ( Pell1QR ` ( ( A ^ 2 ) - 1 ) ) ) |
43 |
29 42
|
sseldd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) e. ( Pell14QR ` ( ( A ^ 2 ) - 1 ) ) ) |
44 |
27 43
|
eqeltrrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. ( Pell14QR ` ( ( A ^ 2 ) - 1 ) ) ) |
45 |
6 24
|
readdcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. RR ) |
46 |
12 24
|
readdcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. RR ) |
47 |
6 23
|
ltaddrpd |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < ( 1 + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) |
48 |
6 12 24 11
|
ltadd1dd |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) < ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) |
49 |
6 45 46 47 48
|
lttrd |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) |
50 |
|
pellfundlb |
|- ( ( ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) /\ ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. ( Pell14QR ` ( ( A ^ 2 ) - 1 ) ) /\ 1 < ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) -> ( PellFund ` ( ( A ^ 2 ) - 1 ) ) <_ ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) |
51 |
1 44 49 50
|
syl3anc |
|- ( A e. ( ZZ>= ` 2 ) -> ( PellFund ` ( ( A ^ 2 ) - 1 ) ) <_ ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) |
52 |
37 38
|
npcand |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( ( A ^ 2 ) - 1 ) + 1 ) = ( A ^ 2 ) ) |
53 |
52
|
fveq2d |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( ( A ^ 2 ) - 1 ) + 1 ) ) = ( sqrt ` ( A ^ 2 ) ) ) |
54 |
12 16
|
sqrtsqd |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( A ^ 2 ) ) = A ) |
55 |
53 54
|
eqtrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( ( A ^ 2 ) - 1 ) + 1 ) ) = A ) |
56 |
55
|
oveq1d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( sqrt ` ( ( ( A ^ 2 ) - 1 ) + 1 ) ) + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) = ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) |
57 |
|
pellfundge |
|- ( ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) -> ( ( sqrt ` ( ( ( A ^ 2 ) - 1 ) + 1 ) ) + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) <_ ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ) |
58 |
1 57
|
syl |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( sqrt ` ( ( ( A ^ 2 ) - 1 ) + 1 ) ) + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) <_ ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ) |
59 |
56 58
|
eqbrtrrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) <_ ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ) |
60 |
|
pellfundre |
|- ( ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) -> ( PellFund ` ( ( A ^ 2 ) - 1 ) ) e. RR ) |
61 |
1 60
|
syl |
|- ( A e. ( ZZ>= ` 2 ) -> ( PellFund ` ( ( A ^ 2 ) - 1 ) ) e. RR ) |
62 |
61 46
|
letri3d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( PellFund ` ( ( A ^ 2 ) - 1 ) ) = ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) <-> ( ( PellFund ` ( ( A ^ 2 ) - 1 ) ) <_ ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) /\ ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) <_ ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ) ) ) |
63 |
51 59 62
|
mpbir2and |
|- ( A e. ( ZZ>= ` 2 ) -> ( PellFund ` ( ( A ^ 2 ) - 1 ) ) = ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) |