Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
2 |
|
zsqcl |
|- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
3 |
1 2
|
syl |
|- ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. ZZ ) |
4 |
|
1zzd |
|- ( A e. ( ZZ>= ` 2 ) -> 1 e. ZZ ) |
5 |
3 4
|
zsubcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ZZ ) |
6 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
7 |
|
eluz2b2 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ 1 < A ) ) |
8 |
7
|
simprbi |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < A ) |
9 |
|
1red |
|- ( A e. ( ZZ>= ` 2 ) -> 1 e. RR ) |
10 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
11 |
|
0le1 |
|- 0 <_ 1 |
12 |
11
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> 0 <_ 1 ) |
13 |
|
eluzge2nn0 |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN0 ) |
14 |
13
|
nn0ge0d |
|- ( A e. ( ZZ>= ` 2 ) -> 0 <_ A ) |
15 |
9 10 12 14
|
lt2sqd |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 < A <-> ( 1 ^ 2 ) < ( A ^ 2 ) ) ) |
16 |
8 15
|
mpbid |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 ^ 2 ) < ( A ^ 2 ) ) |
17 |
6 16
|
eqbrtrrid |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < ( A ^ 2 ) ) |
18 |
10
|
resqcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. RR ) |
19 |
9 18
|
posdifd |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 < ( A ^ 2 ) <-> 0 < ( ( A ^ 2 ) - 1 ) ) ) |
20 |
17 19
|
mpbid |
|- ( A e. ( ZZ>= ` 2 ) -> 0 < ( ( A ^ 2 ) - 1 ) ) |
21 |
|
elnnz |
|- ( ( ( A ^ 2 ) - 1 ) e. NN <-> ( ( ( A ^ 2 ) - 1 ) e. ZZ /\ 0 < ( ( A ^ 2 ) - 1 ) ) ) |
22 |
5 20 21
|
sylanbrc |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) |
23 |
|
rmspecsqrtnq |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) |
24 |
23
|
eldifbd |
|- ( A e. ( ZZ>= ` 2 ) -> -. ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. QQ ) |
25 |
24
|
intnand |
|- ( A e. ( ZZ>= ` 2 ) -> -. ( ( ( A ^ 2 ) - 1 ) e. NN /\ ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. QQ ) ) |
26 |
|
df-squarenn |
|- []NN = { a e. NN | ( sqrt ` a ) e. QQ } |
27 |
26
|
eleq2i |
|- ( ( ( A ^ 2 ) - 1 ) e. []NN <-> ( ( A ^ 2 ) - 1 ) e. { a e. NN | ( sqrt ` a ) e. QQ } ) |
28 |
|
fveq2 |
|- ( a = ( ( A ^ 2 ) - 1 ) -> ( sqrt ` a ) = ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) |
29 |
28
|
eleq1d |
|- ( a = ( ( A ^ 2 ) - 1 ) -> ( ( sqrt ` a ) e. QQ <-> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. QQ ) ) |
30 |
29
|
elrab |
|- ( ( ( A ^ 2 ) - 1 ) e. { a e. NN | ( sqrt ` a ) e. QQ } <-> ( ( ( A ^ 2 ) - 1 ) e. NN /\ ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. QQ ) ) |
31 |
27 30
|
bitr2i |
|- ( ( ( ( A ^ 2 ) - 1 ) e. NN /\ ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. QQ ) <-> ( ( A ^ 2 ) - 1 ) e. []NN ) |
32 |
25 31
|
sylnib |
|- ( A e. ( ZZ>= ` 2 ) -> -. ( ( A ^ 2 ) - 1 ) e. []NN ) |
33 |
22 32
|
eldifd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) |