Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
2 |
1
|
resqcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. RR ) |
3 |
|
1red |
|- ( A e. ( ZZ>= ` 2 ) -> 1 e. RR ) |
4 |
2 3
|
resubcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR ) |
5 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
6 |
|
eluz2b1 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( A e. ZZ /\ 1 < A ) ) |
7 |
6
|
simprbi |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < A ) |
8 |
|
0le1 |
|- 0 <_ 1 |
9 |
8
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> 0 <_ 1 ) |
10 |
|
eluzge2nn0 |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN0 ) |
11 |
10
|
nn0ge0d |
|- ( A e. ( ZZ>= ` 2 ) -> 0 <_ A ) |
12 |
3 1 9 11
|
lt2sqd |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 < A <-> ( 1 ^ 2 ) < ( A ^ 2 ) ) ) |
13 |
7 12
|
mpbid |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 ^ 2 ) < ( A ^ 2 ) ) |
14 |
5 13
|
eqbrtrrid |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < ( A ^ 2 ) ) |
15 |
3 2
|
posdifd |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 < ( A ^ 2 ) <-> 0 < ( ( A ^ 2 ) - 1 ) ) ) |
16 |
14 15
|
mpbid |
|- ( A e. ( ZZ>= ` 2 ) -> 0 < ( ( A ^ 2 ) - 1 ) ) |
17 |
4 16
|
elrpd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR+ ) |