Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelcn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. CC ) |
2 |
1
|
sqcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. CC ) |
3 |
|
ax-1cn |
|- 1 e. CC |
4 |
|
subcl |
|- ( ( ( A ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
5 |
2 3 4
|
sylancl |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
6 |
5
|
sqrtcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. CC ) |
7 |
|
eluz2nn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
8 |
7
|
nnsqcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. NN ) |
9 |
|
nnm1nn0 |
|- ( ( A ^ 2 ) e. NN -> ( ( A ^ 2 ) - 1 ) e. NN0 ) |
10 |
8 9
|
syl |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN0 ) |
11 |
|
nnm1nn0 |
|- ( A e. NN -> ( A - 1 ) e. NN0 ) |
12 |
7 11
|
syl |
|- ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) e. NN0 ) |
13 |
|
binom2sub1 |
|- ( A e. CC -> ( ( A - 1 ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. A ) ) + 1 ) ) |
14 |
1 13
|
syl |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A - 1 ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. A ) ) + 1 ) ) |
15 |
|
2cnd |
|- ( A e. ( ZZ>= ` 2 ) -> 2 e. CC ) |
16 |
15 1
|
mulcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( 2 x. A ) e. CC ) |
17 |
3
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> 1 e. CC ) |
18 |
2 16 17
|
subsubd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - ( ( 2 x. A ) - 1 ) ) = ( ( ( A ^ 2 ) - ( 2 x. A ) ) + 1 ) ) |
19 |
14 18
|
eqtr4d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A - 1 ) ^ 2 ) = ( ( A ^ 2 ) - ( ( 2 x. A ) - 1 ) ) ) |
20 |
|
1red |
|- ( A e. ( ZZ>= ` 2 ) -> 1 e. RR ) |
21 |
|
2re |
|- 2 e. RR |
22 |
21
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> 2 e. RR ) |
23 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
24 |
22 23
|
remulcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( 2 x. A ) e. RR ) |
25 |
24 20
|
resubcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( 2 x. A ) - 1 ) e. RR ) |
26 |
8
|
nnred |
|- ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. RR ) |
27 |
|
eluz2gt1 |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < A ) |
28 |
20 20 23 27 27
|
lt2addmuld |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 + 1 ) < ( 2 x. A ) ) |
29 |
|
remulcl |
|- ( ( 2 e. RR /\ A e. RR ) -> ( 2 x. A ) e. RR ) |
30 |
21 23 29
|
sylancr |
|- ( A e. ( ZZ>= ` 2 ) -> ( 2 x. A ) e. RR ) |
31 |
20 20 30
|
ltaddsubd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( 1 + 1 ) < ( 2 x. A ) <-> 1 < ( ( 2 x. A ) - 1 ) ) ) |
32 |
28 31
|
mpbid |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < ( ( 2 x. A ) - 1 ) ) |
33 |
20 25 26 32
|
ltsub2dd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - ( ( 2 x. A ) - 1 ) ) < ( ( A ^ 2 ) - 1 ) ) |
34 |
19 33
|
eqbrtrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A - 1 ) ^ 2 ) < ( ( A ^ 2 ) - 1 ) ) |
35 |
26
|
ltm1d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) < ( A ^ 2 ) ) |
36 |
|
npcan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) + 1 ) = A ) |
37 |
1 3 36
|
sylancl |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A - 1 ) + 1 ) = A ) |
38 |
37
|
oveq1d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( ( A - 1 ) + 1 ) ^ 2 ) = ( A ^ 2 ) ) |
39 |
35 38
|
breqtrrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) < ( ( ( A - 1 ) + 1 ) ^ 2 ) ) |
40 |
|
nonsq |
|- ( ( ( ( ( A ^ 2 ) - 1 ) e. NN0 /\ ( A - 1 ) e. NN0 ) /\ ( ( ( A - 1 ) ^ 2 ) < ( ( A ^ 2 ) - 1 ) /\ ( ( A ^ 2 ) - 1 ) < ( ( ( A - 1 ) + 1 ) ^ 2 ) ) ) -> -. ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. QQ ) |
41 |
10 12 34 39 40
|
syl22anc |
|- ( A e. ( ZZ>= ` 2 ) -> -. ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. QQ ) |
42 |
6 41
|
eldifd |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) |