Step |
Hyp |
Ref |
Expression |
1 |
|
rmulccn.1 |
|- J = ( topGen ` ran (,) ) |
2 |
|
rmulccn.2 |
|- ( ph -> C e. RR ) |
3 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
4 |
3
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
5 |
4
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
6 |
5
|
cnmptid |
|- ( ph -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
7 |
2
|
recnd |
|- ( ph -> C e. CC ) |
8 |
5 5 7
|
cnmptc |
|- ( ph -> ( x e. CC |-> C ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
9 |
|
ax-mulf |
|- x. : ( CC X. CC ) --> CC |
10 |
|
ffn |
|- ( x. : ( CC X. CC ) --> CC -> x. Fn ( CC X. CC ) ) |
11 |
9 10
|
ax-mp |
|- x. Fn ( CC X. CC ) |
12 |
|
fnov |
|- ( x. Fn ( CC X. CC ) <-> x. = ( y e. CC , z e. CC |-> ( y x. z ) ) ) |
13 |
11 12
|
mpbi |
|- x. = ( y e. CC , z e. CC |-> ( y x. z ) ) |
14 |
3
|
mulcn |
|- x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
15 |
13 14
|
eqeltrri |
|- ( y e. CC , z e. CC |-> ( y x. z ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
16 |
15
|
a1i |
|- ( ph -> ( y e. CC , z e. CC |-> ( y x. z ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
17 |
|
oveq12 |
|- ( ( y = x /\ z = C ) -> ( y x. z ) = ( x x. C ) ) |
18 |
5 6 8 5 5 16 17
|
cnmpt12 |
|- ( ph -> ( x e. CC |-> ( x x. C ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
19 |
|
ax-resscn |
|- RR C_ CC |
20 |
4
|
toponunii |
|- CC = U. ( TopOpen ` CCfld ) |
21 |
20
|
cnrest |
|- ( ( ( x e. CC |-> ( x x. C ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ RR C_ CC ) -> ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) ) |
22 |
18 19 21
|
sylancl |
|- ( ph -> ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) ) |
23 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
24 |
7
|
adantr |
|- ( ( ph /\ x e. CC ) -> C e. CC ) |
25 |
23 24
|
mulcld |
|- ( ( ph /\ x e. CC ) -> ( x x. C ) e. CC ) |
26 |
25
|
ralrimiva |
|- ( ph -> A. x e. CC ( x x. C ) e. CC ) |
27 |
|
eqid |
|- ( x e. CC |-> ( x x. C ) ) = ( x e. CC |-> ( x x. C ) ) |
28 |
27
|
fnmpt |
|- ( A. x e. CC ( x x. C ) e. CC -> ( x e. CC |-> ( x x. C ) ) Fn CC ) |
29 |
26 28
|
syl |
|- ( ph -> ( x e. CC |-> ( x x. C ) ) Fn CC ) |
30 |
|
fnssres |
|- ( ( ( x e. CC |-> ( x x. C ) ) Fn CC /\ RR C_ CC ) -> ( ( x e. CC |-> ( x x. C ) ) |` RR ) Fn RR ) |
31 |
29 19 30
|
sylancl |
|- ( ph -> ( ( x e. CC |-> ( x x. C ) ) |` RR ) Fn RR ) |
32 |
|
simpr |
|- ( ( ph /\ w e. RR ) -> w e. RR ) |
33 |
|
fvres |
|- ( w e. RR -> ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) ` w ) = ( ( x e. CC |-> ( x x. C ) ) ` w ) ) |
34 |
|
recn |
|- ( w e. RR -> w e. CC ) |
35 |
|
oveq1 |
|- ( x = w -> ( x x. C ) = ( w x. C ) ) |
36 |
|
ovex |
|- ( w x. C ) e. _V |
37 |
35 27 36
|
fvmpt |
|- ( w e. CC -> ( ( x e. CC |-> ( x x. C ) ) ` w ) = ( w x. C ) ) |
38 |
34 37
|
syl |
|- ( w e. RR -> ( ( x e. CC |-> ( x x. C ) ) ` w ) = ( w x. C ) ) |
39 |
33 38
|
eqtrd |
|- ( w e. RR -> ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) ` w ) = ( w x. C ) ) |
40 |
32 39
|
syl |
|- ( ( ph /\ w e. RR ) -> ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) ` w ) = ( w x. C ) ) |
41 |
2
|
adantr |
|- ( ( ph /\ w e. RR ) -> C e. RR ) |
42 |
32 41
|
remulcld |
|- ( ( ph /\ w e. RR ) -> ( w x. C ) e. RR ) |
43 |
40 42
|
eqeltrd |
|- ( ( ph /\ w e. RR ) -> ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) ` w ) e. RR ) |
44 |
43
|
ralrimiva |
|- ( ph -> A. w e. RR ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) ` w ) e. RR ) |
45 |
|
fnfvrnss |
|- ( ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) Fn RR /\ A. w e. RR ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) ` w ) e. RR ) -> ran ( ( x e. CC |-> ( x x. C ) ) |` RR ) C_ RR ) |
46 |
31 44 45
|
syl2anc |
|- ( ph -> ran ( ( x e. CC |-> ( x x. C ) ) |` RR ) C_ RR ) |
47 |
19
|
a1i |
|- ( ph -> RR C_ CC ) |
48 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( ( x e. CC |-> ( x x. C ) ) |` RR ) C_ RR /\ RR C_ CC ) -> ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) <-> ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
49 |
5 46 47 48
|
syl3anc |
|- ( ph -> ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) <-> ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
50 |
22 49
|
mpbid |
|- ( ph -> ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
51 |
|
resmpt |
|- ( RR C_ CC -> ( ( x e. CC |-> ( x x. C ) ) |` RR ) = ( x e. RR |-> ( x x. C ) ) ) |
52 |
19 51
|
ax-mp |
|- ( ( x e. CC |-> ( x x. C ) ) |` RR ) = ( x e. RR |-> ( x x. C ) ) |
53 |
3
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
54 |
1 53
|
eqtri |
|- J = ( ( TopOpen ` CCfld ) |`t RR ) |
55 |
54 54
|
oveq12i |
|- ( J Cn J ) = ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) |
56 |
55
|
eqcomi |
|- ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) = ( J Cn J ) |
57 |
50 52 56
|
3eltr3g |
|- ( ph -> ( x e. RR |-> ( x x. C ) ) e. ( J Cn J ) ) |